
- C 1.02
- a) $F(x) = x^3 + 3.5x^2 6x$ b) $F(x) = x^4 4.5x^2 + 13x$
- C 1.05
- **a**) $F_1(z) = \frac{z^{x+1}}{x+1} + a^2bz$ **b**) $F_1(z) = \frac{1}{\ln(z)} + a^2bx$
- c) $F_1(z) = bz^x + \frac{a^2b^2}{2}$ d) $F_1(z) = az^x + \frac{a^3b}{3}$
- C 1.10
- a) 11,73
- **b**) 4,21875
- c) 263,0416
- **d**) 0
- $e) e^4 e^{-1} \approx 54,23$
- f) 2
- **g**) $5\pi \approx 15,71$
- **h**) $\approx 17,65$
- i) 34,27
- C 2.02
- 121,5
- C 2.04
- 121,5
- C 2.05
- a) 1, 3
- **b**) 20,83
- c) 14,2916
- C 2.06
- a) 1) 12,5
- a) 2) 12,5
- b) 1) 1
- b) 2) 1
- c) 1) $\approx 36,32$
- c) 2) $\approx 2,71$

- C 2.08
- 21,083

Die Funktion hat im Intervall [-2; 3] positive und negative Werte. Daher ist der gesuchte Flächeninhalt nicht gleich dem Integral.

- C 2.10
- Nullstellen bei: $x \approx -1,83, x \approx 2,56, x \approx 17,26$
- **1**) Teilfläche1: ≈ 8,85
 - Teilfläche1: ≈ 230,3
- 2) Gesamtfläche: ≈ 239,15

C 2.11

≈ 4,88

C 2.12

a) 8b) 2

C 2.14

≈ 14,91

C 2.15

1

C 2.16

a) $\approx 21,65$

b) $\approx 37,85$

C 2.20

≈ 20,11

C 2.21

a) $\approx 113,1$

b) $\approx 56,55$

C 2.22

a) $\approx 266,57$

 \mathbf{b}) $\approx 25,97$

C 4.02

a) ≈ 0.3694

b) ≈ 0.2108

c) \approx 0,2525

C 4.04

a) $\approx 0,6827$

b) ≈ 0.9725

c) ≈ 0.8812

C 4.06

 $\approx 20,05~cm$

C 4.07

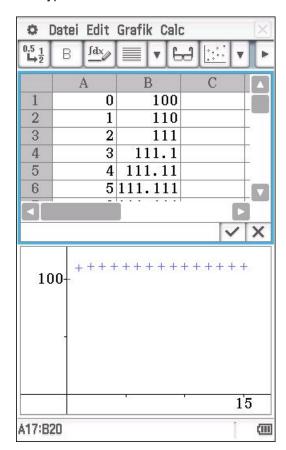
11 Tage

C 4.10

 $\mu = 250,0328971 \dots g$

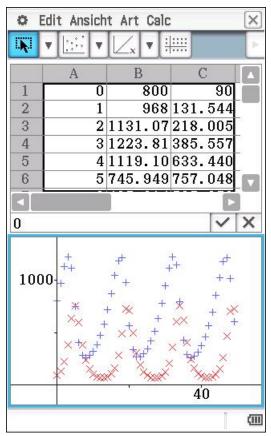
C 4.12 $\sigma = 3,03978416...$

C 4.14 a) 1) $\approx 0,7654$ **a) 2)** $\approx 0,7558$


b) 1) \approx 0,5169 **b**) 2) 0,5 **c**) 1) \approx 0,9995 **c**) 2) \approx 0,9995

C 5.02 1. Methode: [27%; 35%]

C 5.04 mit der Statistikanwendung analog zu Aufgabe C 6.01: 0,808 analog zum Schulbuch, Seite 94: 0,797


C 6.02 Die Irrtumswahrscheinlichkeit beträgt $\approx 0,0388 < 0,05$. Daher kann die Nullhypothese verworfen werden.

C 7.02

111, 1

C 8.02

Anhand des Diagramms kann man erkennen, dass dieses Modell ein periodisches Verhalten aufweist. Dabei folgen die Maxima der Räuberpopulation jeweils den Maxima der Beutepopulation.