1.2 Die Messung der Länge Wie für die Zeitmessung benötigen wir auch für die Messung von Längen eine Maßeinheit und Messgeräte. Im Mittelalter dienten Elle (die Länge von Unterarm und Hand) und Fuß als Längeneinheiten (16.1). Diese waren in jeder Stadt verschieden lang, der Handel mit Waren war dadurch erschwert. Nach genauen Vermessungen der Erde im 18. Jahrhundert wurde der Meter folgendermaßen definiert: Ein Meter (1 m) ist der 10-millionste Teil der Entfernung vom Nordpol zum Äquator. Diese Länge wurde auf einem Metallstab, dem Urmeter (18.2) eingeritzt. Der Urmeterstab wird in Frankreich aufbewahrt. Mit der Entwicklung der Atomphysik erwies sich die alte Definition des Meters als zu ungenau. Da man mittels Atomuhren Zeiten sehr genau messen kann, wird seit 1983 die SI-Einheit Meter über die Lichtgeschwindigkeit definiert: Ein Meter entspricht jener Strecke, die das Licht im luftleeren Raum in 1/299 792 458 s zurücklegt. Die Lichtgeschwindigkeit im Vakuum ist eine wichtige Naturkonstante und beträgt 299 792 458 m/s. Für alle praktischen Zwecke genügt die folgende Näherung: Lichtgeschwindigkeit Licht legt im luftleeren Raum in 1 s eine Strecke von ca. 300 000 km (3·108 m) zurück. Untersuche, überlege, forsche: Längenmessung 16.1 W4 In den USA und Großbritannien wird zwar in den Naturwissenschaften die Längeneinheit Meter verwendet, im Alltag sind noch immer andere Maßeinheiten üblich. Recherchiere, um welche Maßeinheiten es sich handelt und wo sie verwendet werden. Erörtere im Englischunterricht Vor- und Nachteile der Verwendung dieser Maßeinheiten. 16.2 W1 Vor der Einführung des Meters wurden je nach Ort und Zweck unterschiedliche Längeneinheiten verwendet. Recherchiere dazu und präsentiere, falls möglich, deine Ergebnisse im Geschichtsunterricht. 16.3 W4 a) In Baumärkten findest du verschiedene Geräte zur Messung von Längen. Erläutere, um welche Geräte es sich handelt und wie sie benutzt werden. W4 b) Stelle ein Gerät zur Längenmessung im Physikunterricht vor und erkläre seine Funktionsweise. Im Alltag misst man Längen meist mit Maßstäben oder Maßbändern, häufig auch mittels Laserlicht (16.2), Radar oder Ultraschall. Letztere haben ein gemeinsames Prinzip: Man lässt Strahlung an einem Körper reflektieren und misst die Laufzeit des Strahls. Aus der Laufzeit lässt sich die Entfernung des Körpers bestimmen. Experiment: Längenmessung 16.1 Du brauchst: Maßband und (falls möglich) einen Laser-Entfernungsmesser E3 Miss mit dem Maßband oder Laser-Entfernungsmesser Länge und Breite deines Klassenzimmers. Führe die Messung fünf Mal durch, bilde das arithmetische Mittel und notiere die maximale Abweichung von diesem Mittelwert (vgl. S. 18). Überlege, warum du leicht unterschiedliche Ergebnisse erhältst, wenn du das Maßband jedes Mal neu anlegst. Messen im Mikrobereich Untersuche, überlege, forsche: Kleine Objekte 16.4 W1 Wie viele der folgenden Teilchen haben nebeneinander auf einem Meter Platz: Staubkörnchen, Feinstaub, Bakterien, Viren, Atome? Da diese Teilchen unterschiedlich groß sind, kannst du nur ungefähre Werte angeben. Verwende die Potenzschreibweise. 16.1 Ellen-Stäbe am Stephansdom in Wien. Je nach Verwendungszweck waren die Ellenmaße verschieden lang. Die Wiener Tuch-Elle (Maß für Kleiderstoffe) betrug etwa 78 cm. Eine Züricher Elle entsprach etwa 60 cm. Das einheitliche metrische System wurde in vielen Staaten erst in der zweiten Hälfte des 19. Jahrhunderts eingeführt. 16.2 Laser-Entfernungsmessgerät Im Baugewerbe werden Distanzen oft mit Laserlicht gemessen. Laserlicht wird in kurzen Pulsen ausgesendet. Durch Vergleich der ausgesendeten mit den reflektierten Pulsen wird die Laufzeit der Pulse und damit die Entfernung des Objekts bestimmt. 16.3 Die Mikrometerschraube dient zur genauen Messung von Längen. Es lassen sich damit Längen auf 0,01 mm genau ablesen. „Vor 150 Jahren war die Bedeutung des Mikrometers für den Uhrmacher offensichtlich, nicht aber für den Bauern. Und doch hat die Mikrometerpräzision das Pflügen revolutioniert – sie ermöglichte den Bau exakter Maschinen, u. a. die Entwicklung des Traktors. Der Übergang zum Nanometer-Zeitalter leitet gleichfalls eine nicht voraussehbare Entwicklung ein, nur wird alles viel schneller gehen – schneller sogar als die rasante Entwicklung der Mikroelektronik.“ Heinrich Rohrer, Nobelpreisträger für Physik 1986 16 Größenordnungen 1 Die Grundgrößen Zeit und Länge Nur zu Prüfzwecken – Eigentum des Verlags öbv
RkJQdWJsaXNoZXIy ODE3MDE=