– Abschnitt 2: Die Temperatur bleibt bei 0 °C. Hier schmilzt das Eis zu Wasser; (latente) Schmelzwärme wird aufgenommen, ohne dass sich die Temperatur ändert. – Abschnitt 3: Die Temperatur des Wassers steigt bei konstanter Wärmezufuhr gleichmäßig von 0 °C auf etwa 100 °C. – Abschnitt 4: Die Temperatur bleibt konstant bei etwa 100 °C, was darauf hinweist, dass das Wasser anfängt zu sieden und zu verdampfen; (latente) Verdampfungswärme wird aufgenommen, ohne dass sich die Temperatur ändert. – Abschnitt 5: Nach dem Verdampfungsprozess steigt die Temperatur weiter an, da der Dampf weiterhin Wärme aufnimmt. Diese Phasen repräsentieren die physikalischen Prozesse des Erwärmens, Schmelzens, Erhitzens, Verdampfens und weiteren Erwärmens von Dampf. 2 E schmelz _ E abs = 8,35 kWh __ 0,8 kWh/Tag ≈ 10,44 Tage Daher würde es etwa 10–11 Tage dauern, bis der See eisfrei ist. 3a) ρ W,0 = 2,5 g·m −3 3b) φ = 14,7 % 3c) Wenn die Sättigungsmenge bei 20°C etwa 17g/m3 ist und die relative Luftfeuchtigkeit auf 50 % ansteigen soll, dann beträgt die absolute Luftfeuchtigkeit: ρ W,20 = 8,5 g·m −3 Die Differenz zwischen der aktuellen absoluten Luftfeuchtigkeit (2,5 g/m3) und der gewünschten absoluten Luftfeuchtigkeit gibt an, wie viel Wasser verdunsten muss: (8,5 g·m −3 − 2,5 g·m −3)·60 g = 360 g Für eine relative Feuchtigkeit von 50% müssen 6g/m3 bzw. für den ganzen Raum 360 g Wasser verdunsten. 3 Das ideale Gas, S. 127 Teste dein Wissen: 1 Antwort a) ist richtig: Alle Teilchen (auch für Moleküle wie H2, O2, …) haben Masse und werden als punktförmig angenommen. Antwort c) ist richtig: Teilchen eines idealen Gases üben nur während elastischer Stöße Kräfte aufeinander und auf die Gefäßwände aus. 2 Antwort a) ist richtig. 3 Antwort a) ist falsch, statt der Celsiusskala muss die Kelvinskala verwendet werden. 4 Antwort c) ist richtig. Bei elastischen Stößen wird die Bewegungsrichtung verändert. Dabei wirkt zwischen den Teilchen und der Gefäßwand eine abstoßende Kraft. Wegen der riesigen Anzahl von Teilchen ergibt sich eine messbare Kraft und daher auch der Druck auf die Gefäßwand. Rechenaufgaben 1 p 2 = 1,323 bar Der Überdruck in den erwärmten Luftkammern des Bootes beträgt somit etwa 1,323 bar, was eine Steigerung von etwa 10 % bedeutet. 2a) V 2 = 3 m 3 2b) γ = 0,0033 K−1 3 N = 2,7·10 25 Moleküle 4 V 2 = 4,21 m 3 = 4 210 l 5 p 2 = 3,5 bar Der Druck im Reifen nimmt von (2,2 + 1) bar auf 3,5bar zu. Der gemessene Reifendruck ist daher 2,5 bar. 6 m = 1 529 kg 4 Energie und Entropie, S. 137 Teste dein Wissen 1 Antworten a) und c) sind richtig. 2 Antwort a) ist richtig 3 Antworten a) und b) sind richtig. 4 Der erste Hauptsatz der Wärmelehre besagt, dass die innere Energie eines Körpers durch Arbeit W und durch Wärme Q geändert werden kann. Somit betrifft dieser lediglich die innere Energie. Der allgemeine Erhaltungssatz der Energie ist ein umfassenderes Prinzip, das besagt, dass die Gesamtenergie eines abgeschlossenen Systems immer konstant bleibt, unabhängig von den Prozessen, die innerhalb des Systems stattfinden. Dies schließt alle Formen von Energien ein. 5 Eine Erhöhung der Temperatur T resultiert aus der Zufuhr einer entsprechenden Wärmemenge Q. Bei einer irreversiblen Temperaturänderung wird beispielsweise Wärme von einem heißen Körper zu einem kälteren Körper übertragen. Dieser Prozess erhöht die Entropie ΔS = Q/T und kann nicht umgekehrt werden, ohne zusätzliche Energie in das System einzuführen. 6 Reversible und irreversible Prozesse unterscheiden sich hauptsächlich in der Art und Weise, wie sie auf Änderungen reagieren und ob sie in ihren ursprünglichen Zustand zurückkehren können oder nicht. 7 Beispielantwort: Ja, in einem Teil eines Systems kann die Entropie abnehmen. Es ist wichtig zu beachten, dass die Entropie eine Zustandsgröße ist, die für das gesamte System definiert ist und nicht für Teile davon. Die Gesamtentropie eines isolierten Systems kann nicht abnehmen, sondern strebt immer einem Maximum an. Wenn wir jedoch ein System in offene Teile unterteilen und die Entropie jedes Teils betrachten, kann die Entropie eines Teils abnehmen, solange die Entropie eines anderen Teils des Systems um einen mindestens gleich großen Betrag zunimmt. Rechenaufgaben 1 ΔS = 27,4 J·K −1 Da die Entropieänderung ΔS = 27,4 J·K −1 > 0folgt, dass der Mischungsvorgang irreversibel ist. 2 ΔS = 1,91 J·K −1 3 Für die Innenwand: (Negatives Vorzeichen, da Energie aus dem Haus fließt.) ΔS innen = −85 J·K .1 Für die Außenwand: ΔS außen = 95 J·K .1 4 Faktor = 20,8 5 Wärme- und Kältetechnik, S. 148 Teste dein Wissen 1 b) Antwort ist richtig. Der Wirkungsgrad η einer Wärmekraftmaschine ist allgemein das Verhältnis der gewonnenen mechanischen Nutzarbeit W zur aufgewendeten Wärme Q. In einem Verbrennungsmotor ist die zugeführte Wärmeenergie Q (im Idealfall) gleich der chemischen Energie des Brennstoffs, und die Nutzenergie ist die mechanische Energie, die der Motor erzeugt. Der Motor soll die chemische Energie, welche durch Verbrennung als thermische Energie zur Verfügung steht, mit möglichst wenig Wärmeverlust und geringem Schadstoffausstoß in mechanische Energie (Zylindertakt) umwandeln. Daher ist der Wirkungsgrad das Verhältnis von mechanischer zu chemischer Energie. Beachte, dass der Wirkungsgrad eines realen Verbrennungsmotors aufgrund von Wärmeverlusten und anderen Faktoren oft deutlich unter 100 % liegt. 2 c) Antwort ist richtig. 3 b) Antwort ist richtig. 4 c) Antwort ist richtig. Generatoren für die Stromerzeugung arbeiten nahezu verlustfrei ( η ≈ 98 %). Daher hat der Generator den größten Wirkungsgrad unter den genannten Anlagen. Dies liegt daran, dass Generatoren sehr effizient mechanische Energie in elektrische Energie umwandeln können. 5 b) Antwort ist richtig. Bei einem Kühlschrank entnimmt der Kompressor elektrische Energie aus dem Stromnetz die er dann für den Kühlprozess in mechanische Arbeit umwandelt. Der Kompressor pumpt das gasförmige Kältemittel in den Verflüssiger an der Rückwand des Kühlschranks und komprimiert es. Diese Arbeit wird somit dem Kühlschrank für die Kühlung zugeführt. 6 Antwort c) ist richtig. Rechenaufgaben 1 η = 0,17 Der (maximale) Wirkungsgrad, den man bei einer Umgebungstemperatur von 20 °C bestenfalls erreichen könnte, beträgt etwa 17 %. 2 η ≈ 0,61 Der thermodynamische Wirkungsgrad des Kraftwerks sinkt von etwa 61% auf etwa 56%, also um 5%, wenn die Abgastemperatur von 30°C auf 70°C hinaufgesetzt wird. 3 P abwärme = 1,5 GW m = 1,79·10 5 kg·s −1 Das bedeutet, der Fluss muss eine Wasserführung von mindestens 179 Kubikmetern pro Sekunde aufweisen, um die Abwärme aufzunehmen und das Wasser nicht um mehr als 2 °C zu erwärmen. 4a) W = 120 kJ 4b) P = 1,2 MW 5a) W = 2 100 J = 2,1 kJ 5b) P = 105 kW 157 Nur zu Prüfzwecken – Eigentum des Verlags öbv
RkJQdWJsaXNoZXIy ODE3MDE=