12 1 POTENZEN, WURZELN UND LOGARITHMEN 1.37 Vereinfache und stelle das Ergebnis mit positiven Hochzahlen dar! a) x – 2 _ x 3 b) y 2 _ y – 4 c) a – 3 · b _ a – 5 · b – 1 d) a – 1 · b 2 _ a · b – 3 e) 2 · u – 5 · v _ u 6 · v – 2 f) 3 · v – 1 · w 2 _ v – 7 · w – 3 1.38 Vereinfache und stelle das Ergebnis mit positiven Hochzahlen dar! a) (x 2 y) – 3 _ x b) (x 2 y 2) – 1 _ x – 1 y – 1 c) 3 a · 1 _ 6 a – 2 d) 9 _ 3 x – 1 y – 1 · x 2 y 2 e) 25 x _ x – 3 y – 2 · x – 1 y 2 f) 2 uv _ u – 1 v – 1 : u – 1 v _ v – 1 u 1.39 Vereinfache und stelle das Ergebnis mit positiven Hochzahlen dar! a) a– 3 : b0 b) u0 : v– 1 c) 1 _ w 2 · x 0 d) 2 k 0 _ m – 2 e) x – 1 + x 0 _ y 0 f) x 0 _ 1 + y 0 g) a 0 · m – 1 _ n 0 1.40 Vereinfache und stelle das Ergebnis mit positiven Hochzahlen dar! a) a + b _ a – 1 + b – 1 b) a – b _ a – 1 – b – 1 c) (x – 1 + y – 1) – 1 d) (x – 1 – y – 1) – 1 e) z – 1 · 1 _ z ·z· 1 _ z – 1 1.41 Vereinfache und stelle das Ergebnis mit positiver Hochzahl dar! a) a 5 _ a – 2 b) x – 5 · x _ x – 3 c) s 4 · s – 3 _ s 5 · s 6 : s – 2 d) (u 2) – 5 _ u 7 e) ( 1 _ 2 y) – 3 · (2y 4) – 3 f) – 1 _ 2 · k – 2 · k 4 1.42 Ordne jedem Term in der linken Tabelle den äquivalenten Term aus der rechten Tabelle zu! a) ( 4 a – 2 b 3 _ 8 a 4 b – 4 ) – 2 A 8 a 21 b 15 b) (a + b) · (a + b) – 2 A (a + b) 3 ( 2 a 3 b 2 _ a – 4 b – 3 ) 3 B b 4 _ a 6 1 _ (a + b) – 2 B 1 _ a 2 +2ab+b 2 ( a 2 b – 3 _ a – 1 b 0 ) – 2 C 4 a 12 _ b 14 (a + b) 2 _ (a + b) – 1 C 1 _ a + b ( a 4 b _ a – 2 b 5 ) – 1 D b 6 _ a 6 (a + b) – 1 a 0 b _ (a + b) b D a 2 + 2ab + b 2 E a 6 _ b 4 E a + b F a 5 b – 2 F 1 __ ab + b2 1.43 Berechne geschickt! a) ( 1 _ 2 ) – 3 : ( 1 _ 2 ) 3 b) ( 2 _ 3 ) 2 : ( 2 _ 3 ) – 2 c) ( 1 _ 3 ) 3 : ( 1 _ 3 ) – 1 d) ( 5 _ 6 ) – 1 : ( 5 _ 6 ) – 2 1.44 Stelle mit positiven Hochzahlen dar, vereinfache dann und berechne! a) 2 · 3 – 3 · 5 _ 4 – 2 · 9 · 5 – 1 c) (– 3) 2 · 27 · 5 3 _ (– 3) 4 · 3 · 5 2 e) 4 – 3 · 7 2 · 10 – 2 _ 2 – 7 · 7 · 100 – 1 g) 15 · 3 2 · 5 – 2 _ 3 – 1 · 5 – 2 · 9 b) 3 2 · 16 ·5 – 2 _ 3 – 1 · 2 3 · 5 – 3 d) 2 3 · 5 – 2 · 100 _ 4 · 5 – 3 · 10 3 f) 8 ·25 – 2 · 7 – 3 _ 2 4 · 5 – 3 · 7 – 4 h) 10 · 3 – 1 · 5 2 _ 2 · 3 – 2 · 25 2 1.45 Vereinfache und stelle das Ergebnis mit positiven Hochzahlen dar! a) ( x _ 2 y ) – 1 · ( 2 x _ y ) – 2 b) ( u v _ w ) – 2 · (– v w _ u ) – 1 c) ( 1 _ y ) – 1 · ( x _ y ) – 2 d) [ ( 3 x _ y ) – 2 ] 3 · ( x _ y ) 6 1.46 Berechne für a = 0,2 · 10– 5, b = 0,3 · 10– 6, c = 0,1 · 10– 8! a) a · b b) a 2 · c c) ab 2 _ c d) a 2 b 2 _ c 3 e) a 2 b 2 _ 10 c 2 f) ab 3 _ 100 c 2 Nur zu Prüfzwecken – Eigentum des Verlags öbv
RkJQdWJsaXNoZXIy ODE3MDE=