95 5.1 Kartesische Koordinaten und Polarkoordinaten 5.03 Was kann über das Polarwinkelmaß φ des Punktes P ausgesagt werden? a) P liegt im 1. Quadranten Q I. e) P liegt auf der positiven 1. Achse. b) P liegt im 2. Quadranten Q II. f) P liegt auf der positiven 2. Achse. c) P liegt im 3. Quadranten Q III. g) P liegt auf der negativen 1. Achse. d) P liegt im 4. Quadranten Q IV. h) P liegt auf der negativen 2. Achse. BEACHTE Die Punkte auf den Achsen liegen in keinem Quadranten. 5.04 Ordne jedem Punkt der linken Tabelle die zutreffende Aussage über dessen Polarwinkelmaß φ aus der rechten Tabelle zu! a) (5 1 – 6) A 0° < φ < 90° b) (– 4 1 0) A φ = 0° (– 4 1 – 7) B 90° < φ < 180° (0 1 4) B φ = 90° (3 1 3) C 180° < φ < 270° (4 1 0) C φ = 180° (– 9 1 2) D 270° < φ < 360° (0 1 – 4) D φ = 270° Erweiterung von Sinus, Cosinus und Tangens R Für φ * (0°; 90°) gilt in der nebenstehenden Abbildung: (1) sin φ = y _ r (2) cos φ = x _ r (3) tan φ = y _ x (sofern x ≠ 0) Für φ + (0°; 90°) sind diese Formeln zunächst sinnlos, weil wir sin φ, cos φ und tan φ nur für φ * (0°; 90°) definiert haben. Es liegt aber nahe, Sinus, Cosinus und Tangens zu verallgemeinern, indem wir die Formeln (1), (2) und (3) als Definitionen für Sinus, Cosinus und Tangens für φ * [0°; 360°) nehmen. Definition (Verallgemeinerung von Sinus, Cosinus und Tangens) Für alle P = (x 1 y) = [r 1 φ] mit r > 0 und φ * [0°; 360°) setzen wir: sin φ = y _ r , cos φ = x _ r , tan φ = y _ x (sofern x ≠ 0, dh. φ ≠ 90° und φ ≠ 270°) 5.05 Ermittle die Vorzeichen von sin φ, cos φ und tan φ in den einzelnen Quadranten und zeige, dass sich die nebenstehende Tabelle ergibt! LÖSUNG FÜR Q I InQIistx>0,y>0undr>0. Daraus folgt: sin φ = y _ r > 0, cos φ = x _ r > 0, tan φ = y _ x > 0 Auch die folgenden Formeln gelten weiterhin: Satz Für alle φ * [0°; 360°) gilt: (1) sin 2 φ + cos 2 φ = 1 (2) tan φ = sin φ _ cos φ (sofern φ ≠ 90° und φ ≠ 270°) BEWEIS (1) sin 2 φ + cos 2 φ = ( y _ r ) 2 + ( x _ r ) 2 = x 2 + y 2 _ r 2 = ‡x‡ 2 + ‡y‡ 2 __ r 2 = r 2 _ r 2 = 1 (2) tan φ = y _ x = r · sin φ _ r · cos φ = sin φ _ cos φ AUFGABEN L 1. A. 2. A. Q I Q II Q IV Q III y x φ P r Q I Q II Q III Q IV sin φ + + – – cos φ + – – + tan φ + – + – Nur zu Prüfzwecken – Eigentum des Verlags öbv
RkJQdWJsaXNoZXIy ODE3MDE=