Das ist Mathematik 3, Schulbuch

89 D 2 Vernetzte Aufgaben Noah hat zu Weihnachten insgesamt 280 € bekommen. 150 € davon legt er auf sein Sparbuch. Insgesamt hat er zu Jahresbeginn 379 € auf seinem Sparbuch. Zu seinem Glück wurde der vereinbarte Zinssatz von 1 % p.a. auf 1,75 % p.a. erhöht. 1) Wie viel Euro hat er nach einem Jahr auf seinem Sparbuch? 2) Welche Angaben hast du für 1) verwendet? 3) Finde eine weitere Aufgabenstellung passend zum Text! Für ein Kapital K wird der anfängliche Nettozinssatz von 3,5 % p.a. nach 5 Monaten (= Jahresende) um 0,75 Prozentpunkte gesenkt. Zu diesem Zeitpunkt werden die bis dahin anfallenden Zinsen dem Kapital zugeschlagen. Berechne den Guthabenstand am Ende des gegebenen Zeitraumes! a) K = 480 €, nach 7 Monaten c) K = 5 800 €, nach 10 Monaten b) K = 1 350 €, nach 8 Monaten d) K = 840 €, nach 11 Monaten Thimo kauft eine 8 kg schwere Wassermelone. In der Zeitung hat er gelesen, dass die Melone auch als Durstlöscher gilt, da sie 96 % Wasser enthält. Nach einer Woche in extremer Hitze ist der Wasseranteil um einen Prozentpunkt gesunken. 1) Kreuze die richtigen Antworten an! A Zu Beginn gibt es 320 g feste Bestandteile. B Nach der einen Woche steigt der Anteil der festen Bestandteile auf 10 %. C Der Wasseranteil nach einer Woche liegt bei 86,4 %. D Der Anteil der festen Stoffe liegt nach einer Woche bei 5 %. E Der Wasseranteil beträgt nach einer Woche 95 %. 2) Stelle eine Vermutung auf, welche Masse die Melone nach einer Woche hat! Berechne diese anschließend! 371 B O M DI B O M DI 372* Beispiel K = 3 000 €, nach 9 Monaten Zinsen nach 5 Monaten: 3 000 €· ​ 3,5 ___ 100 ​· ​ 5 __ 12 ​= 43,75 € ➞ Guthabenstand: 3 043,75 € Zinsen nach weiteren 4 Monaten: 3 043,75 €· ​ 2,75 ___ 100 ​· ​ 4 __ 12 ​= 27,901… € ≈ 27,90 € w Guthabenstand nach insgesamt 9 Monaten: 3 043,75 € + 27,90 € = 3 071,65 € B O M DI 373 Verwende für 2) die Masse und den Prozentsatz der festen Anteile, um auf die Gesamtmasse zu kommen. Tipp Prozentrechnung: W … Prozentwert G … Grundwert p % … Prozentsatz W = G· ​ p ___ 100 ​ Rechnen mit Zinsen: p % … vereinbarter Zinssatz p. a. ​K ​0 ​… Anfangskapital Z … Zinsen Jahresnettozinssatz bei 25 % KESt.: ​p ​netto ​% = p % · 0,75 Zinsen für 1 Jahr: ​Z ​netto ​= ​K ​0 ​· ​ ​p ​netto​ ___ 100 ​= Z · 0,75 Zinsen für m Monate: ​Z ​netto ​= ​K ​0 ​· ​ ​p ​netto​ ___ 100 ​· ​ m __ 12 ​ Zinsen für t Tage: ​Z ​netto ​= ​K ​0 ​· ​ ​p ​netto​ ___ 100 ​· ​ t ___ 360 ​ AH S. 31 Zusammenfassung * Wirtschafts-, Finanz- und Verbraucher/innenbildung Nur zu Prüfzwecken – Eigentum des Verlags öbv

RkJQdWJsaXNoZXIy MjU2NDQ5MQ==