Lösungswege 2, Schulbuch

579 Ordne so zu, dass korrekte Aussagen für ein Dreieck ABC entstehen. Gegenüber vom Eckpunkt C befindet sich … A … die Seiten b und c Beim Eckpunkt A befinden sich … B … der Eckpunkt B Beim Eckpunkt B befindet sich … C … der Winkel β Gegenüber der Seite c befindet sich … D … die Seite c E … der Eckpunkt C F … der Winkel γ Die Winkelsumme im Dreieck 580 Nimm ein Blatt Papier und schneide ein Dreieck aus. i) Reiße zwei der drei Ecken wie abgebildet ab und lege sie zur dritten Ecke dazu. Du kannst dies bei mehreren Dreiecken ausprobieren. ii) Was kannst du über die Summe der drei Winkel bei diesem Dreieck aussagen? Bei jedem Dreieck kann durch den Eckpunkt C eine Parallele zur Seite c gezogen werden. Auf diese Weise entstehen zu α und β gleich große Parallelwinkel, die zusammen mit dem Winkel γ einen gestreckten Winkel (180°) ergeben. Alle drei Winkel zusammen ergeben einen gestreckten Winkel. Es gilt daher: Winkelsumme im Dreieck Die Winkelsumme ist die Summe aller Innenwinkel. Alle drei Winkel im Dreieck zusammen ergeben einen gestreckten Winkel. Daraus folgt: α + β + γ = 180° Weiters gilt: Der längsten Seite liegt der größte Winkel gegenüber. Der kürzesten Seite liegt der kleinste Winkel gegenüber. 581 Gegeben ist das folgende Dreieck. i) Miss nach, ob die Winkelsumme 180° ergibt. ii) Ordne jeweils die Seiten und die Winkel der Größe nach. a) Winkel: < < b) Winkel: < < Seiten: < < Seiten: < < Von einem Dreieck sind die Winkel α = 60° und β = 45° gegeben. Berechne die Größe des dritten Winkels. Es gilt: α + β + γ = 180° ¥ γ = 180° − (α + β) = 180° − (60° + 45°) = = 180° – 105° = 75° DI M, DI ÓArbeitsblatt 8kz86y α α β γ β A B C a b c Merke O A α β γ a b c B C A α β γ a b c B C Muster  Sprachliche Bildung 118 22 Eigenschaften von Dreiecken Nur zu Prüfzwecken – Eigentum des Verlags öbv

RkJQdWJsaXNoZXIy ODE3MDE=