Mathematik verstehen 2, Schulbuch

AufgaBEn 8.44 Konstruiere das Dreieck ABC mit den folgenden Angaben und beschrifte es vollständig! Vergiss nicht, vor der Konstruktion eine Skizze anzufertigen! a) a = 3cm; b = 5cm; c =7cm d) a = 9,9cm; b = 4,6cm; c = 5,5cm b) a = 4,6 cm; b = 7,3 cm; c = 10,2 cm e) a=b=78mm;c=44mm c) a=64mm;b=52mm;c=81mm f) a=b=c=0,8dm 8.45 Konstruiere das Dreieck ABC mit den Seitenlängen a = 4,7cm, b = 8,6 cm und c = 6,9 cm sowie das Dreieck DEF mit den Seitenlängen d = 8,6 cm, e = 4,7cm und f = 6,9 cm! Sind die Dreiecke ABC und DEF kongruent? Begründe die Antwort! 8.46 Messt die Seitenlängen des nebenstehend abgebildeten Dreiecks! Konstruiert dieses sodann auf einem Blatt Papier, schneidet das Dreieck aus und überprüft die Kongruenz, indem ihr das ausgeschnittene Dreieck auf das gezeichnete im Buch legt! 8.47 Konstruiere das Dreieck ABC mit a = 7,2 cm, b = 9,5 cm und c = 5,1 cm und ermittle die dadurch entstandenen drei Winkelmaße α, β und γ! Kreuze die gemessenen Ergebnisse an!  α ≈ 52°; β ≈ 80°; γ ≈ 48°  α ≈ 42°; β ≈ 100°; γ ≈ 38°  α ≈ 32°; β ≈ 48°; γ ≈ 100°  α ≈ 100°; β ≈ 32°; γ ≈ 48°  α ≈ 48°; β ≈ 100°; γ ≈ 32°  α ≈ 48°; β ≈ 110°; γ ≈ 22° 8.48 Konstruiere das Dreieck ABC mit den folgenden Angaben, beschrifte es vollständig und gib die Koordinaten des dritten Eckpunkts an! Welche Art von Dreieck liegt vor? (1 Koordinateneinheit š 1 cm) a) A = (‒2 1 ‒3); B = (5 1 ‒3); a = 5,4 cm; b = 7,1 cm b) B = (4 1 1); C = (2 1 3); b = c =7,2cm c) A = (‒1 1 ‒2); C = (2 1 2); a = 4cm; c = 3cm 8.49 Ein Spitzacker hat die Form eines gleichschenkeligen Dreiecks. Die Basislänge ist mit 96 m und die beiden Schenkellängen sind mit 156 m angegeben. Konstruiere die Form des Spitzackers im Maßstab 11 500! 8.50 Lässt sich ein Dreieck ABC mit den folgenden Angaben konstruieren? Begründe die Antwort! a) a = 8,3 cm; b = 8,3 cm; c = 8,2 cm c) a = 3,7cm; b = 6,2cm; c = 9,9cm b) a = 1 mm; b = 1 dm; c = 1 cm d) a=2mm;b=c=2cm 8.51 Von einem Dreieck sind zwei Seitenlängen gegeben. Ergänze den Bereich für die dritte Seitenlänge so, dass das Dreieck konstruierbar ist! a) a = 12,5 cm; b = 8,7cm; cm < c < cm b) d=38mm;e=94mm; mm < f < mm c) s = 0,6 dm; t = 1,9 dm; dm < u < dm Rk Rk VB Rk DI B Rk Rk DI Rk VB DI 190 k3 FIgUren Und Körper Nur zu Prüfzwecken – Eigentum des Verlags öbv

RkJQdWJsaXNoZXIy ODE3MDE=