Mathematik verstehen 1, Schulbuch

3.5 Zahlen in Dezimaldarstellung multiplizieren Multiplikation mit einer natürlichen Zahl Multiplizieren wir eine Zahl in Dezimaldarstellung mit einer natürlichen Zahl, können wir uns diesen Vorgang als mehrfache Addition mit gleichen Summanden vorstellen: 12,8·4 = 12,8 + 12,8 + 12,8 + 12,8 4-mal 3.100 Für die Tanzaufführung kauft Bettina acht gleiche T-Shirts. Eines kostet 5,89 €. 1) Schätze durch eine Überschlagsrechnung, wie viel sie für die acht T-Shirts bezahlen muss! 2) Berechne den exakten Gesamtpreis! Lösung: 1) 5,89·8 ≈ 6·8 = 48 Sie wird etwas weniger als 48 € bezahlen müssen. 2) 5,89·8 Das Produkt muss ebenso viele Nachkommaziffern aufweisen 47,12 w ie der erste Faktor. Der Gesamtpreis für alle acht T-Shirts ist 47,12 €. Bei der schriftlichen Multiplikation zweier Zahlen, bei welcher der zweite Faktor eine natürliche Zahl ist, muss das Produkt ebenso viele Nachkommaziffern aufweisen wie der erste Faktor. Nachkommaziffern können auch Nuller sein, zB: 1,5 · 4 = 6,0. Ist der zweite Faktor eine mehrstellige natürliche Zahl, rechnet man genauso: 3.101 Berechne das Produkt 52,962·374! Lösung: 52,962·374 15 888 600 Die grauen Nuller können wir natürlich wieder weglassen. 3 707 340 211 848 Erst beim Ergebnis müssen wir auf das richtige Setzen des 19 807,788 Kommas achten. Multipliziert man eine Zahl in Dezimaldarstellung mit 10, 100, 1 000, …, so werden die Ziffern dieser Zahl in der Stellenwerttafel um eine Stelle, um zwei Stellen, um drei Stellen, … nach links verschoben. Das bedeutet: Wird eine Zahl in Dezimaldarstellung mit 10, 100, 1 000, … multipliziert, muss das Komma um eine Stelle, um zwei Stellen, um drei Stellen, … nach rechts verschoben werden. Gegebenenfalls müssen an die Zahl rechts Nuller angehängt werden. RK RK T H Z E z h 4,53 = 4 5 3 = 4,53 4,53·10 = 4 5 3 0 = 45,3 4,53·100 = 45300=453,0 4,53·1 000 = 453000=4530,0 3 95 Zahlen In DezImaldaRsTellunG Nur zu Prüfzwecken – Eigentum des Verlags öbv

RkJQdWJsaXNoZXIy ODE3MDE=