Lösungswege Mathematik Oberstufe 7, Schülerbuch

AN-R 1.3 FA-R 1.5 AN-R 1.3 AN-R 1.3 FA-R 2.2 AN-R 1.3 AN-R 1.3 AN-R 1.3 50 2 Weg zur Matura Grundlagen der Differentialrechnung > Teil-2-Aufgaben Teil-2-Aufgaben Quadratische Funktionen Gegeben ist eine quadratische Funktion f mit f​​(x) ​= ​a x​2 ​+ b x + c​. Den Scheitel (= der höchste oder tiefste Punkt der Parabel) kann man mittels S = ​(− ​b _ 2 a​ ​​|​c − ​ ​b ​2​ _ 4 a​​) ​berechnen. a) Da der Scheitelpunkt der höchste oder tiefste Punkt der Parabel ist, besitzt die Tangente in diesem Punkt die Steigung 0. 1) Leite die Formel für den Scheitelpunkt des Graphen der Funktion f her. b) 1) Erkläre, warum es bei einer quadratischen Funktion nicht möglich ist, dass die Steigung der Tangente bei zwei verschiedenen Stellen gleich ist. c) 1) Bestimme jenen Punkt der Parabel f​​(x) ​= ​x ​2 ​− 4 x + 7​, in dem die Steigung der Tangente gleich der Steigung der Sekante von f im Intervall ​[− 3; 2] ​ist. d) 1) Vervollständige den Satz so, dass er mathematisch korrekt ist. Ist der Differenzenquotient einer Funktion f mit f​​(x) ​= ​a x​2 ​+ c​in ​[− 2; 5] ​ (1) , dann muss gelten: (2) . (1) (2) positiv  f ist in ​[− 2; 5] ​streng monoton fallend  negativ  ​a > 0​  null  ​c < 0​  Weg eines Läufers Ein Läufer bewegt sich näherungsweise gemäß der Zeit-OrtFunktion s mit ​s​(t) ​= − 0,025 ​t​3 ​+ 0,7 ​t​2 ​+ 1,85 t​(s in Meter, t in Sekunden). In der Abbildung sieht man den Graphen der Funktion s, sowie eine Sekante durch die beiden Punkte A​ = ​(1​|​2,525) ​und ​B = ​(6​|​30,9) ​des Graphen von s. t s(t) 2 4 6 8 10121416 –2 40 80 120 –40 0 A B s a) 1) Bestimme die Funktionsgleichung der Sekante durch die Punkte A und B. 2) Welche Bedeutung besitzt die Steigung der Sekante im gegebenen Kontext? b) 1) Bestimme jenen Zeitpunkt t in ​[2; 6]​, an dem der Differenzenquotient von s in ​[2; 6]​ gleich dem Differentialquotienten von s zum Zeitpunkt t ist. 2) Interpretiere diesen Zusammenhang im gegebenen Kontext. M2 167‌ K M2 168‌ Nur zu Prüfzwecken – Eigentum des Verlags öbv

RkJQdWJsaXNoZXIy ODE3MDE=