Lösungswege Mathematik Oberstufe 6, Schülerbuch

24 Logarithmus und Exponentialgleichungen > Logarithmus 2 Schreibe in exponentieller Form an. a) ​log ​4 ​1024 = 5​ b) ​log ​10 ​1000 = 3​ c) ​log ​ ​1 _ 4 ​ ​ ​1 _ 64 ​ = 3​ d) ​log ​2 ​64 = 6​ e) ​log ​ ​1 _ 2 ​ ​0,0625 = 4​ Zur Bestimmung von Logarithmen kann man von der Äquivalenz x​ = ​log​a ​b ⇔ ​a ​ x ​= b​ ausgehen. Die Lösung einer Exponentialgleichung lautet x​ = ​log​u ​r​. Kreuze die zugehörige Exponentialgleichung an. A  B  C  D  E  F  ​x ​u ​ = r​ ​r ​u ​ = x​ ​x − ​r ​u ​ = 0​ ​u ​x ​− r = 0​ ​r ​x ​ = u​ ​0 = u − ​r ​x​ Welchen Wert hat ​log​4 ​64​? ​x = ​log​4 ​64 ⇔ ​4 ​ x ​= 64 → x = 3​ Berechne den Logarithmus. a) ​log ​4 ​16​ c) ​log ​5 ​25​ e) ​log ​3 ​81​ g) ​log ​6 ​36​ i) ​log ​10 ​10000​ b) ​log ​2 ​32​ d) ​log ​3 ​243​ f) ​log ​4 ​4​ h) ​log ​5 ​625​ j) ​log ​6 ​216​ Welchen Wert hat a) ​log ​2 ​ ​ 1 _ 32 ​ b) ​log ​3 ​​ 5 9 _ 9 ​? a) ​x = ​log​2 ​ ​ 1 _ 32 ​ ⇔ ​2 ​ x ​= ​1 _ 32 ​ = ​ 1 _ ​2 ​5​ ​ = ​2 ​ −5 ​ → x = − 5​ b) ​x = ​log​3 ​​ 5 9 _ 9 ​ ⇔ ​3 ​x ​ = ​9 ​ ​1 _ 5 ​ ​= ​(​3 ​2​) ​ ​ 1 _ 5 ​ ​ = ​3 ​ ​ 2 _ 5 ​ → x = ​ 2 _ 5 ​ Berechne den Logarithmus. a) ​log ​2 ​ ​ 1 _ 2 ​ c) ​log ​4 ​ ​ 1 _ 64 ​ e) ​log ​7 ​ ​ 1 _ 49 ​ g) ​log ​3 ​​ 9 _ 3 ​ i) ​log ​10 ​​ 3 9 _ 0, 01 ​ k) ​log ​10 ​ ​ 1 _ ​9 1000 ​ ​ b) ​log ​3 ​ ​ 1 _ 9 ​ d) ​log ​5 ​ ​ 1 _ 125 ​ f) ​log ​10 ​ ​ 1 _ 1000 ​ h) ​log ​6 ​​ 3 9 _ 36 ​ j) ​log ​2 ​ ​ 1 _ ​9 _ 2 ​ ​ l) ​log ​5 ​ ​ 1 _ ​ 5 9 _ 5 ​ ​ Kreuze die beiden richtigen Aussagen an. A  B  C  D  E  ​log ​11 ​ ​ 1 _ 121 ​ = 2​ ​log ​11 ​ ​ 1 _ 121 ​ = − 2​ ​121 = ​11 ​ −2​ ​log ​ 11 ​ ​ 1 _ 121 ​ = ​2 ​ −1​ ​11 ​−2 ​ = ​1 _ 121 ​ Welchen Wert hat ​log​4 ​8​? ​x = ​log​4 ​8 ⇔ ​4 ​ x ​= 8 ⇔ ​2 ​2x ​ = ​2 ​3 ​ → 2x = 3 → x = ​3 _ 2 ​ Berechne den Logarithmus. a) ​log ​9 ​27​ b) ​log ​9 ​ ​ 1 _ 3 ​ c) ​log ​32 ​64​ d) ​log ​81 ​9​ e) ​log ​125 ​5​ f) ​log ​49 ​343​ Schreibe in exponentieller Form an und bestimme x. a) ​log ​x ​25 = 2​ b) ​log ​x ​5 = 3​ c) ​log ​3 ​x = 2​ d) ​log ​5 ​x = − 2​ e) ​log ​10 ​0, 01 = x​f) ​log ​ ​2 _ 7 ​ ​ ​49 _ 4 ​ = x​ Welchen Wert hat ​log​a ​​a ​ 5​? ​x = ​log​a ​​a ​ 5 ​ ⇔ ​a ​x ​ = ​a ​5 ​ → x = 5​ Berechne den Logarithmus. a) ​log ​a ​a​ b) ​log ​a ​​a ​ 7​ c) ​log ​ a ​ ​ 1 _ ​a ​3​ ​ d) ​log ​a ​​9 _ a ​ e) ​log ​a ​​ 4 9 _ a ​ f) ​log ​a ​ ​ 1 _ ​3 9 _ a ​ ​ 101 102 Muster 103 104 t Muster 105 106 AG-R 2.1 M1 107 ó Muster 108 109 110 Muster 111 112 Nur zu Prüfzwecken – Eigentum des Verlags öbv

RkJQdWJsaXNoZXIy ODE3MDE=