Mathematik verstehen 4, Arbeitsheft

Reelle Zahlen 1 3 ​ 9 __ ​9 __ 25 ​​ 8,004 ​ 27 __ 3 ​ ‒1,5 ‒ ​ 9__ 64​ 3,52 ‒9,​˙ 9​ 0 natürliche Zahl          ganze Zahl          rationale Zahl          2 a)  möglich: zB ​ 37 __ 10 ​ b)  möglich: zB ‒ ​ 24 __ 2 ​ c)  nicht möglich d)  möglich: zB ‒ ​ 4 _ 9 ​ e)  möglich: zB ​ 49 __ 7 ​ f)  möglich: zB ​ 0 _ 2 ​ 3 a) 0,125 e) ‒0,​ _ 90​ b) ‒0,​1˙ ​ f) 0,35 c) 0,25 g) 0,9 d) ‒0,​˙ 3​ h) 1,​1˙ ​ 4 1) ​ 9__ 18​cm 2) 4,24 cm 3) 4,2426 cm 5 1) ​ 9__ 74​cm 2) 8,60 cm 3) 8,6023 cm 6 1) 0,53 2) 0,5394 7 n2 1 9 16 36 49 75 144 915,06 2401 1 000 2n 2 6 8 12 14 17,32 24 60,5 98 63,25 n 1 3 4 6 7 8,66 12 30,25 49 31,62 ​ n _ 2​ 0,5 1,5 2 3 3,5 4,33 6 15,13 24,5 15,81 ​ 9_ n​ 1 1,73 2 2,45 2,65 2,94 3,46 5,5 7 5,62 8 rationale Zahlen irrationale Zahlen ​ 9 __ 2​ ​ 9 __ 3​ ​ 9 __ 5​ ​ 9 __ 6​ ​ 9 _ 7​ ​ 9 __ 8​ ​ 9 __ 10​ ​ 9 __ 11​ ​ 9 __ 12​ ​ 9 __ 13​ ​ 9 __ 14​ ​ 9 __ 15​ ​ 9 __ 17​ ​ 9 __ 18​ ​ 9 __ 19​ ​ 9 __ 20​ ​ 9 __ 0​ ​ 9 _ 1​ ​ 9 __ 4​ ​ 9 __ 9​ ​ 9 __ 16​ 9 a) 42 = 16 (‒4)2 = 16 d) ​ “ ​ 11 __ 12​ §​ 2 ​= ​ 121 ___ 144 ​ ​ “ ‒ ​ 11 __ 12​ §​ 2 ​= ​ 121 ___ 144 ​ b) 92 = 81 (‒9)2 = 81 e) 2,52 = 6,25 (‒2,5)2 = 6,25 c) ​ “ ​ 2 _ 5​ §​ 2 ​= ​4 __ 25 ​ ​ “ ‒ ​ 2 _ 5​ §​ 2 ​= ​4 __ 25 ​ f) 10,4 2 = 108,16 (‒10,4)2 = 108,16 10 Sei x * R0 +, dann ist (‒x)·(‒x) = (‒1)·(‒1)·x·x = x2 º 0. Es gibt keine reelle Zahl, deren Quadrat eine negative Zahl ist. 11 a) 4 b) 4 c) ‒5 d) 21 e) 1 f) 1 12 2 13 a) 4 b) 9 c) 7 d) 11 e) 12 f) 20 14 a) 2 b) 3 c) 5 d) 10 e) 9 f) 12 15         16 a) 2 ​ 9_ 2​ d) 3 ​ 9_ n​ b) 3 ​ 9_ 7​ e) 3a ​ 9__ 2b​ c) 5 ​ 9__ 11​ f) 6 c2 d3 ​ 9_ 7​ 17 Da 3888 = 4·972, wird aus dem Faktor 4 die Wurzel gezogen, somit kommt ​ 9_ 4​= 2 vor die Wurzel. Da 972 = 4·243, wird aus dem Faktor 4 die Wurzel gezogen, somit kommt ein weiteres Mal ​ 9_ 4​= 2 zusätzlich vor die Wurzel. Da 243 = 9·27, wird aus dem Faktor 9 die Wurzel gezogen, somit kommt ​ 9_ 9​= 3 zusätzlich vor die Wurzel. Da 27 = 9·3, wird aus dem Faktor 9 die Wurzel gezogen, somit kommt abermals ​ 9_ 9​= 3 zusätzlich vor die Wurzel. 18 a) d = ​ 9__ 20​ b) d = ​ 9__ 45​ c) d = ​ 9__ 29​ d) d = ​ 9__ 13​ 19 20 21 3 ​ 9_ 3​≈ 5,2 Die Hypotenusenlänge ist 6 cm, die senkrechte Kathetenlänge ist 3 cm, dh. die waagrechte Kathetenlänge ist ​ 9 ____ 62 ‒ 32​cm = ​ 9__ 27​cm = 3 ​ 9_ 3​cm ≈ 5,2 cm. 22 a) 327m221m ≈ 15,6m In dieser Situation ist eine genauere Rundung als auf Dezimeter nicht zweckmäßig. b) 194 km3 ≈ 65 km In dieser Situation ist eine genauere Rundung als auf Kilometer nicht zweckmäßig. c) 2m7 ≈ 0,286m In dieser Situation ist eine Rundung auf Millimeter genau notwendig. d) (0,14mm + 0,021mm)2 ≈ 0,08mm In dieser Situation (Durchschnittswert von zwei Mittelwerten) ist eine genauere Rundung als auf zwei Nachkommastellen nicht zweckmäßig. 1 0 1 2 3 4 5 6 √13 √13 0 1 2 3 4 5 7 8 62√10 √40 = 2√10 1 Lösungen Mathematik verstehen Arbeitsheft 4 Nur zu Prüfzwecken – Eigentum des Verlags öbv

RkJQdWJsaXNoZXIy ODE3MDE=