9.4 Statistische Darstellungen und Kenngrößen Darstellungen von Häufigkeiten Die absolute Häufigkeit gibt an, wie oft ein Wert in einer Datenmenge vorkommt. Die relative Häufigkeit in Dezimal-, Bruch- oder Prozentdarstellung erhält man, wenn man die zugehörige absolute Häufigkeit durch die Gesamtzahl aller Daten dividiert. Daten können auf unterschiedliche Arten dargestellt werden, zB: Urliste: 2, 2, 3, 1, 2, 3, 0, 1, 2, 2, 0, 1, 1, 3, 2, 3, 2, 2, 1, 0 (richtige Antworten) geordnete Liste: 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3 (richtige Antworten) Tabelle: richtige Antworten 0 1 2 3 absolute Häufigkeit 3 5 8 4 Säulendiagramm: Balkendiagramm: 0 0 1 2 3 richtige Antworten 1 2 3 4 5 8 7 6 absolute Häufigkeit 0 0 1 2 3 4 5 6 7 8 richtige Antworten 1 2 3 absolute Häufigkeit Kreisdiagramm: Streifendiagramm (Prozentstreifen): 0 15% 25% 40% 20% 1 2 3 0 15% 20% 40% 25% 1 2 3 Weitere Darstellungsmöglichkeiten sind Liniendiagramme, Stängel-Blatt-Diagramme, Piktogramme, Mehrfeldertafeln usw. Merkmale (Variablen) Bei einer statistischen Erhebung kann man Daten bezüglich ihrer Merkmale untersuchen. Nominale oder qualitative Merkmale dienen der Unterscheidung von Ausprägungen, zB Augenfarbe, Vereinszugehörigkeit, Geschlecht usw. Ordinale Merkmale legen eine Rangordnung fest, zB Platzierung beim Schirennen, Waggonnummer, Sitzreihe usw. Metrische Merkmale werden grundsätzlich durch (Maß-)Zahlen dargestellt, zB Körpergröße, Temperatur, Wassermenge usw. 246 Nur zu Prüfzwecken – Eigentum des Verlags öbv
RkJQdWJsaXNoZXIy ODE3MDE=