Die Oberfläche des Drehkegels Zur Selbstkontrolle sind alle Werte im Kästchen unten. Zwei falsche sind auch dabei. Welche? 239 Berechne den Mantelflächeninhalt des Drehkegels. Runde auf zwei Dezimalstellen. a) r = 55 mm, h = 23 mm b) r = 3,1 cm, h = 7,9 cm c) r = 1 m, h = 1,2 m 240 Berechne den Oberflächeninhalt des Drehkegels. Runde auf zwei Dezimalstellen. a) d = 30 cm, h = 12 cm b) d = 0,9 dm, h = 1,4 dm c) d = 19 m, h = 3,3 m 241 Vervollständige die Tabelle. a) b) c) d) e) r 10 cm 7,3 cm 28 cm 19,1 cm s 12 cm 9,5 cm 27,8 cm h 26 cm 6,2 cm 45 cm M O 242 Gegeben sind vier kegelförmige Kerzen mit d = 10 cm und h = 25 cm. a) Die Kerzen sollen bunt bemalt werden. Berechne, wie viel Fläche pro Kerze bemalt werden muss, wenn der Boden unbehandelt bleibt. b) Jede Kerze wird komplett mit Papier umwickelt. Ermittle den gesamten Papierverbrauch, wenn man mit 50 % mehr Papier rechnet. 38 H2 H2 H2 H2 10 cm 7,3 cm 7,2 cm 583,68 m2 82,65 cm2 28 cm 19,1 cm 15,3 cm 27,86 cm 4,91 m2 12 cm 9,5 cm 53 cm 4 287,81 cm2 27,8 cm 10 300,81 mm2 26 cm 9,5 cm 6,2 cm 1 612,08 cm2 45 cm 400,48 cm2 20,2 cm 1 890,11 cm2 2,72 mm2 875,15 cm2 275,20 cm2 214,82 cm2 4 662,12 cm2 1 668,12 cm2 1 189,31 cm2 442,62 cm2 377,59 cm2 7 125,13 cm2 2 814,21 cm2 74 I Zylinder, Kegel, Kugel Nur zu Prüfzwecken – Eigentum des Verlags öbv
RkJQdWJsaXNoZXIy MjU2NDQ5MQ==