781 Ergänze die Lücken so, dass eine mathematisch richtige Aussage entsteht. Der Graph der Funktion f mit ist parallel zur x-Achse, weil ist. f(x) = –2x æ k positiv æ f(x) = –9 æ k negativ æ f(x)=4–3x æ k = 0 æ 782 Hannes zeichnet den Graphen einer Funktion f mit f(x) = x + 8. Erkläre ihm, wie er schnell erkennen kann, dass ihm ein Fehler unterlaufen ist. 783 Zeichne den Graphen einer linearen Funktion f, der durch P geht und die angegebene Steigung besitzt. Zeichne dafür den Punkt P in ein Koordinatensystem. Danach zeichne ausgehend von diesem Punkt das Steigungsdreieck mit der gegebenen Steigung. In welchem Punkt schneidet der Graph die y-Achse? a) P = (– 3 | – 4), k = 1 b) P = (2|1), k = 1 c) P = (– 2 | 4), k = – 2 d) P = (– 3 | 6), k = – 3 784 Gegeben ist die Funktion f mit f(x) = k x + d (d ≠ 0). Kreuze die beiden zutreffenden Aussagen an. Der Graph von f schneidet die x-Achse im Punkt (d | 0) æ Erhöht man den x-Wert von f um 1, dann verändert sich der y-Wert um k æ Der Graph von f schneidet die x-Achse nicht, wenn k positiv ist æ Der Graph von f schneidet die y-Achse im Punkt (0 | d) æ Der Graph der Funktion f geht durch den Ursprung æ 785 Die Jugendlichen unterhalten sich über parallele Geraden. Wer von ihnen hat recht? Begründe deine Entscheidung anhand von selbst gewählten Beispielen. Aufstellen von linearen Funktionen In der Abbildung ist der Graph einer linearen Funktion f gezeichnet. Stelle die dazu gehörende Funktionsgleichung auf. 1. Lies an der y-Achse den Wert von d ab. d = 2 2. Gehe von einem Punkt aus eins nach rechts und lies anschließend den Wert von k ab. k = – 2 3. Stelle die Funktionsgleichung auf: f(x) = – 2 x + 2 H3 H3, H4 H1, H2 x f(x) 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 f 10 0 H3 Ó Erklärvideo 7u32wy H3, H4 Muster 0 x f(x) 1 2 f 3 1 2 1 – 2 –1 ÓArbeitsblatt 89u52v Ó Erklärvideo 7u38en Maria Die Graphen zweier linearer Funktionen sind parallel, wenn die beiden Werte für d gleich sind Thomas Die Graphen zweier linearer Funktionen sind parallel, wenn die beiden Werte für k gleich sind Hannes Die Graphen zweier linearer Funktionen sind parallel, wenn die beiden Werte für k gleich, aber die Werte für d unterschiedlich sind 170 29 Lineare Funktionen Nur zu Prüfzwecken – Eigentum des Verlags öbv
RkJQdWJsaXNoZXIy MjU2NDQ5MQ==