832 Pia und Nina unterhalten sich. Lies dir ihre Aussagen durch. Pia: „Wenn ich 5 000 € Kredit für 4 % aufnehme oder 5 000 € für 4 % anlege, erhalte ich überall die gleichen Habenzinsen bzw. Schuldzinsen“ i) Erkläre Pia in einer Nachricht, auf was sie vergessen hat und warum ihre Behauptung falsch ist. ii) Berechne die jährlichen Kreditzinsen und Habenzinsen (inkl. KESt). Wie hoch ist der Unterschied? Effektiver Zinssatz (peff %) Die 25 % Kapitalertragssteuer (KESt) kann man auch vom Zinssatz p % abziehen. Man erhält dann den effektiven Zinssatz peff %. peff = 0,75 ∙ p Zeff = K0 · peff _ 100 833 Berechne den effektiven Zinssatz. a) p%=4%p.a. b) p%=2%p.a. c) p% = 2,4% p.a. d) p% = 3,2% p.a. e) p % = 3 % p. a 834 Berechne den Bankzinssatz p% bei gegebenem effektivem Zinssatz peff %. a) peff % = 3% p.a. b) peff % = 2,1% p.a. c) peff % = 1,2 % p. a. 835 Gegeben sind das Ausgangskapital K0 und der Bankzinssatz p %. i) Berechne den effektiven Zinssatz. ii) Berechne die effektiven Zinsen für ein Jahr. iii) Berechne das Kapital nach einem Jahr. a) K0 = 2400€; p% = 2% p.a. b) K0 = 8200€; p% = 4,8% p.a. c) K0 = 180 000 €; p % = 2,1 % 836 Berechne die Zinsen für ein Jahr mit den beiden angegebenen Methoden. i) Methode 1: Berechne zuerst die Zinsen Z, dann die KESt und dann die effektiven Zinsen Zeff. ii) Methode 2: Berechne zuerst den effektiven Zinssatz peff und damit die effektiven Zinsen Zeff. iii) Begründe: Warum kommen bei beiden Lösungswegen die gleichen Jahreszinsen heraus? a) K0 = 5800€; p% = 2,4% p.a. b) K0 = 1 000 €; p % = 1,6 % p. a. c) K0 = 850 000 €; p % = 2,8 % 837 Kathi hat einen sehr kurzen Lösungsweg gefunden, um das Kapital nach einem Jahr zu berechnen: K0 = 18 000 € peff = 0,75 · p K0 ¥ 100 % K1 = K0 · q p% = 4% peff = 0,75 · 4 K1 ¥ 103 % K1 = 18 000 · 1,03 K1 = ? peff % = 3 % q = 1,03 K1 = 18 540 € i) Beschreibe Kathis Lösungsweg. ii) Probiere Kathis Lösungsweg mit: a) K0 = 2800€; p% = 2,4% p.a. b) K0 = 10 000 €; p % = 1,8 % p. a. c) K0 = 200000€; p% = 0,8% p.a. Zinsen für Teile eines Jahres Ein Bankjahr hat 360 Tage Zinsen für 1 Tag (t = 1 d) ¥ Jahreszinsen : 360 ¥ Z1 d = K0 · peff _ 100 ∙ 1 _ 360 Zinsen für d Tage: ¥ Zt = K0 · peff _ 100 ∙ d _ 360 Ein Bankjahr hat 12 Monate Zinsen für 1 Monat (t = 1 m) ¥ Jahreszinsen : 12 ¥ Z1 m = K0 · peff _ 100 ∙ 1 _ 12 Zinsen für m Monate: ¥ Zt = K0 · peff _ 100 ∙ m _ 12 Berechne die Zinsen nach 8 Tagen bei K0 = 55 000 € und p = 2,3 % p. a. (inkl. KESt). K0 = 55 000 € peff = 0,75 ∙ p Z8 T = K0 · peff __ 100 ∙ d _ 360 p = 2,3% p.a. peff = 0,75 ∙ 2,3 Z8 T = 55 000 · 1,725 __ 100 ∙ 8 _ 360 t = 8 d peff = 1,725 % Z8 T = 21,08 € H2, H4 Merke H2 H2 peff = 0,75 ∙ p | : 0,75 p = peff _ 0,75 H2 H2, H3 H2, H3 Merke Muster + peff 169 H Rechnen mit Prozenten Nur zu Prüfzwecken – Eigentum des Verlags öbv
RkJQdWJsaXNoZXIy ODE3MDE=