Mathematische Formelsammlung
14.2 Streuungsmaße s 2 = s _ x 2 = σ 2 … empirische Varianz; s = s _ x = σ … empirische Standardabweichung; d _ x … mittlere lineare Abweichung; s 2 = s _ x 2 = σ 2 = (x 1 – _ x) 2 + (x 2 – _ x) 2 + … + (x n – _ x) 2 ___ n = 1 _ n ; i = 1 n (x i – _ x) 2 s = 9 __ s 2 = s _ x = 9 __ s _ x 2 = σ = 9 __ σ 2 = 9 ________________ (x 1 – _ x) 2 + (x 2 – _ x) 2 + … + (x n – _ x) 2 ___ n = 9 _______ 1 _ n ; i = 1 n (x i – _ x) 2 Andere Definition s 2 = (x 1 – _ x) 2 + (x 2 – _ x) 2 + … + (x n – _ x) 2 ___ n – 1 = 1 _ n – 1 ; i = 1 n (x i – _ x) 2 s = 9 __ s 2 Bei gegebenen absoluten Häufigkeiten: s 2 = (a 1 – _ x) 2 H 1 + (a 2 – _ x) 2 H 2 + … + (a k – _ x) 2 H k ___ n = 1 _ n ; i = 1 k (a i – _ x) 2 H i = 1 _ n ; i = 1 k (a i – _ x) 2 H n (a i ) bzw. σ 2 = (x 1 – _ x) 2 h 1 + (x 2 – _ x) 2 h 2 + … + (x m – _ x) 2 h m ___ n = 1 _ n ; i = 1 m (x i – _ x) 2 h i Andere Definition s 2 = (x 1 – _ x) 2 h 1 + (x 2 – _ x) 2 h 2 + … + (x m – _ x) 2 h m ___ n – 1 = 1 _ n – 1 ; i = 1 m (x i – _ x) 2 h i Bei gegebenen relativen Häufigkeiten: s 2 = (a 1 – _ x) 2 h n (a 1 ) + (a 2 – _ x) 2 h n (a 2 ) + … + (a k – _ x) 2 h n (a k ) = ; i = 1 k (a i – _ x) 2 h n (a i ) bzw. σ 2 = (x 1 – _ x) 2 r 1 + (x 2 – _ x) 2 r 2 + … + (x m – _ x) 2 r m = ; i = 1 m (x i – _ x) 2 r i Verschiebungssatz: s 2 = s _ x 2 = σ 2 = 1 _ n (x 1 2 + x 2 2 + … + x n 2 ) – _ x 2 = 1 _ n ( ; i = 1 n x i 2 ) – _ x 2 s 2 = a 1 2 H n (a 1 ) + a 2 2 H n (a 2 ) + … + a k 2 H n (a k ) ___ n – _ x 2 s 2 = [ a 1 2 h n (a 1 ) + a 2 2 h n (a 2 ) + … + a k 2 h n (a k ) ] – _ x 2 Statistik 35 Nur zu Prüfzwecken – Eigentum des Verlags öbv
Made with FlippingBook
RkJQdWJsaXNoZXIy ODE3MDE=