Mathematische Formelsammlung
11.8 Numerische Integration a = x 0 < x 1 < x 2 < … < x n – 1 < x n = b; x i – x i – 1 = b – a __ n = ∆ x für i = 1, 2, 3, …, n Rechtecksformel : a b f(x)dx ≈ b – a _ n [ f(x 0 ) + f(x 1 ) + f(x 2 ) + … + f(x n – 1 ) ] = = ∆ x · ; i = 0 n – 1 f(x i ) Trapezformel : a b f(x)dx ≈ b – a _ 2n [ f(x 0 ) + 2 f(x 1 ) + 2 f(x 2 ) + … + + 2 f(x n – 1 ) + f(x n ) ] Regel von Simpson a = x 0 < x 1 < x 2 < … < x 2n – 1 < x 2n = b; x i – x i – 1 = b – a __ 2n für i = 1, 2, 3, …, 2n : a b f(x)dx ≈ b – a _ 6n { f(x 0 ) + f(x 2n ) + 2 [ f(x 2 ) + f(x 4 ) + f(x 6 ) + + … + f(x 2n – 2 ) ] + 4 [ f(x 1 ) + f(x 3 ) + f(x 5 ) + … + f(x 2n – 1 ) ] } Regel von Kepler (Fassregel) : a b f(x)dx ≈ b – a _ 6 [ f(a) + 4f ( a + b _ 2 ) + f(b) ] x 0 f b a x y ∆ x 0 f b a y x 0 f b a y x 0 f b a a+b 2 y Differential- und Integralrechnung 29 Nur zu Prüfzwecken – Eigentum des Verlags öbv
Made with FlippingBook
RkJQdWJsaXNoZXIy ODE3MDE=