Mathematische Formelsammlung
11.2 Ableitungs- und Stammfunktionen F … Stammfunktion von f; k, q, C * R ; a * R + \ {1} Funktion Ableitungsfunktion Stammfunktion y = f(x) = k y’ = f’(x) = 0 F(x) = : kdx = kx + C y = f(x) = x q y’ = f’(x) = q · x q – 1 q ≠ ‒1: F(x) = : x q dx = x q + 1 _ q + 1 + C q = ‒1, also f(x) = 1 _ x : F(x) = : 1 _ x dx = ln | x | + C y = f(x) = e x y’ = f’(x) = e x F(x) = : e x dx = e x + C y = f(x) = a x y’ = f’(x) = a x · lna F(x) = : a x dx = a x _ lna + C y = f(x) = ln x y’ = f’(x) = 1 _ x F(x) = : ln x dx = x · ln x – x + C y = f(x) = a log x y’ = f’(x) = 1 _ x · a loge = 1 _ x · 1 _ lna F(x) = : a log x dx = = 1 _ lna (x · ln x – x) + C y = f(x) = sin x y’ = f’(x) = cos x F(x) = : sin x dx = ‒ cos x + C y = f(x) = cos x y’ = f’(x) = ‒ sin x F(x) = : cos x dx = sinx + C y = f(x) = tan x y’ = f’(x) = 1 _ cos 2 x = 1 + tan 2 x F(x) = : tan x dx = ‒ ln | cos x | + C y = f(x) = cot x y’ = f’(x) = ‒1 _ sin 2 x = ‒ (1 + cot 2 x) F(x) = : cot x dx = ln | sin x | + C Differential- und Integralrechnung 25 Nur zu Prüfzwecken – Eigentum des Verlags öbv
Made with FlippingBook
RkJQdWJsaXNoZXIy ODE3MDE=