Mathematik verstehen 8, Schulbuch
41 2 . 3 Volumina 2 . 64 Der Graph der Funktion f rotiert um die y-Achse. Berechne das Volumen des entstehenden Drehkörpers! a) f(x) = 1 _ 3 x, 0 ª x ª 4 c) f(x) = 1 _ 2 x 2 , 0 ª x ª 2 e) f(x) = 2 _ x , 1 _ 2 ª x ª 2 b) f(x) = 1 _ 2 x + 2, 2 ª x ª 8 d) f(x) = 9 _ x, 1 ª x ª 4 f) f(x) = (x + a) 2 , 0 ª x ª a 2 . 65 Leite die Formel V = 4r 3 π _ 3 für das Volumen einer Kugel her! Hinweis : A(x) = y 2 π und x 2 + y 2 = r 2 2 . 66 Berechne das Volumen des Körpers, der entsteht, wenn der Graph der Funktion f zwischen den beiden Nullstellen von f um die x-Achse rotiert! a) f(x) = 9 – x 2 c) f(x) = 9 ___ 4 – x 2 b) f(x) = x 2 (3 – x) d) f(x) = 9 ____ 9 – 4x 2 2 . 67 Die von der Funktion f im Intervall [a; b] festgelegte Fläche rotiert um die x-Achse. Berechne das Volumen des entstehenden Rotationskörpers und überprüfe das Ergebnis mit einer elementar- geometrischen Volumsformel! a) f(x) = r, a = 0, b = h c) f(x) = 2 + x, a = 0, b = h b) f(x) = x, a = 0, b = h d) f(x) = R – r _ h · x + r, a = 0, b = h 2 . 68 Der Graph der im angegebenen Intervall definierten Funktion f rotiert einmal um die x-Achse und einmal um die y-Achse. Wie verhalten sich die Volumina der jeweils entstehenden Rotations- körper zueinander? a) f(x) = x 2 , [0; 2] b) f(x) = 1 _ 2 9 _ x, [1; 4] c) f(x) = 3 9 _ x 2 _ 2 , [0; 4] d) f(x) = 1 _ x , [1; 2] 2 . 69 Der Graph der Funktion f, die Tangente an den Graphen im Punkt P und die beiden Koordinaten- achsen begrenzen eine Fläche. Diese rotiert um die x-Achse bzw. um die y-Achse. Berechne die Volumina der entstehenden Drehkörper! a) f(x) = 3 _ 5 x 2 + 3, P = (5 1 f(5)) b) f(x) = 1 _ 4 x 2 + 3, P = (6 1 f(6)) 2 . 70 Der Hohlraum einer Sektschale entsteht durch Rotation der Funktion f mit f(x) = k · 9 _ xum die 1. Achse. Der Hohlraum ist 4 cm hoch und der Rand hat einen Radius von 6 cm. 1) Wie hoch steht der Flüssigkeitsspiegel in der Schale, wenn diese einen Achtelliter Sekt enthält? Hinweis : 1 Liter = 1 000 cm 3 2) Wie hoch müsste die Schale mindestens sein, damit einen Viertelliter Sekt darin Platz hätte? 2 . 71 Ein Rotationsparaboloid entsteht durch Rotation des Graphen der Funktion f: x ¥ k · 9 _ xum die x-Achse. Zeige: Das Volumen des Rotationsparaboloids ist halb so groß wie das Volumen des umgeschriebenen Zylinders (siehe nebenstehende Abbildung). r r – r 0 x y 0 h r x y Nur zu Prüfzwecken – Eigentum des Verlags öbv
Made with FlippingBook
RkJQdWJsaXNoZXIy ODE3MDE=