Mathematik verstehen 6, Schulbuch

8 1 Potenzen, Wurzeln und logari thmen Aufgaben 1 . 02 Kreuze die richtige(n) Aussage(n) an! a) a​ ​ 6 ​+ ​a​ 2 ​= ​a​ 8 ​  b) a​ ​ 3 ​· ​a​ 3 ​= ​a​ 9 ​  a​ ​ 4 ​· ​ 2 ​ 1 _ a ​ 3 ​ 4 ​= 1  a​ ​ 7 ​: ​a​ 6 ​= a  (a​ ​ 6 ​· b​)​ 2 ​= ​a​ 12 ​· ​b​ 2 ​  a​ ​ 2 ​· ​a​ 2 ​· ​a​ 2 ​= 3​a​ 2 ​  ​ ​a​ 10 ​ _ ​a​ 5 ​ ​= ​a​ 2 ​  ​ 2 ​a​ 3 ​ 3 ​ 5 ​= ​a​ 8 ​  a​ ​ 2 ​· ​b​ 4 ​· ​c​ 6 ​= (a · ​b​ 2 ​· ​c​ 3 )​ ​ 2 ​  ​ 2 2​a​ 3 ​ 3 ​ 2 ​= 4​a​ 6 ​  1 . 03 Kreuze die richtige(n) Aussage(n) an! a) (​– 2)​ 3 ​= – 2​ ​ 3 ​  b) 3​ ​ 4 ​> ​2​ 4 ​  (​– 2)​ 1 ​= 2  (​– 2)​ 4 ​> – ​2​ 4 ​  (​–1)​ 4 ​· (–1) = 1  2​ ​ 4 ​> ​(– 2)​ 4 ​  (​–1)​ 4 ​: (–1) = ​(–1)​ 3 ​  (​– 2)​ 4 ​> ​(– 2)​ 3 ​  (​– 3)​ 4 ​≠ – ​3​ 4 ​  2​ ​ 4 ​· ​3​ 4 ​= ​6​ 4 ​  1 . 04 Stelle als eine Potenz dar und berechne! a) (– 2) 3 · (– 2) 2 c) (–7) 3 · (–7) e) ​ 2 ​ 1 _ 2 ​ 3 ​ 2 ​· ​ 2 ​ 1 _ 2 ​ 3 ​ 3 ​ g) (– 3) 2 · 3 b) (– 3) 3 · (– 3) 2 d) (– 5) 2 · (–5) 2 f) ​ 2 – ​ 1 _ 2 ​ 3 ​ 3 ​· ​ 2 – ​ 1 _ 2 ​ 3 ​ 3 ​ h) (– 4) 2 · 4 1 . 05 Stelle als eine Potenz dar und berechne! a) 3 9 : 3 3 c) (– 2) 3 : (– 2) 2 e) ​ 2 ​ 1 _ 5 ​ 3 ​ 4 ​: ​ 2 ​ 1 _ 5 ​ 3 ​ 2 ​ g) ​ 2 ​ 1 _ 3 ​ 3 ​ 2 ​: ​ 1 _ 3 ​ b) (– 4) 8 : (– 4) 4 d) (– 5) 10 : (– 5) 5 f) ​ 2 – ​ 1 _ 2 ​ 3 ​ 7 ​: ​ 2 – ​ 1 _ 2 ​ 3 ​ 3 ​ h) ​ 2 ​ 1 _ 6 ​ 3 ​ 4 ​: ​ 2 ​ 1 _ 6 ​ 3 ​ 3 ​ 1 . 06 Berechne geschickt! a) 5 3 · 2 3 c) 0,5 4 · 2 4 e) ​ 2 ​ 3 _ 2 ​ 3 ​ 2 ​· (– 2) 2 g) ​ 2 ​ 2 _ 3 ​ 3 ​ 3 ​· ​ 2 ​ 3 _ 2 ​ 3 ​ 3 ​ b) 2 4 · 3 4 d) (–1,5) 3 · (– 2) 3 f) 0,02 4 · 5 4 h) (– 0,5) 3 · 0,5 3 1 . 07 vereinfache für n * N *! a) a​ ​ n ​· ​a​ 2n​ ​ c) ​ ​a​ n ​ _ a ​ e) ​ ​(– a)​ 5n​ ​ _ (– a​)​ 2n​ ​ ​ g) (​a​ n )​ ​ 3 ​ i) (​– a​ n ​) : (– a) b) a​ ​ 6n​ ​: ​a​ 2n​ ​ d) ​ ​a​ 10n​ ​ _ a ​ f) ​ ​a​ n ​· ​a​ 6 ​ _ a · a​ ​ 5 ​ ​ h) (​a​ n + 1 )​ ​ 4 ​ j) (​– a)​ n ​: (–1) 1 . 08 Berechne für n * N *! a) 0​ ​ n ​ b) (​–1)​ n ​ c) (​–1)​ 2n ​ d) (​–1)​ 2n + 1 ​ e) 1 + ​(–1)​ 2n ​ 1 . 09 Berechne für n * N *! a) ​ 2 – (–1​)​ 2n​ ​ __ 2 + (–1​)​ 2n – 1 ​ ​ b) ​ 2 + (–1​)​ 2n – 1 ​ __ 2 – (–1​)​ 2n​ ​ ​ c) ​ 2 – (–1​)​ 2n + 1 ​ __ 2 + (–1​)​ 2n​ ​ ​ d) ​ 2 + (–1​)​ 2n​ ​ __ 2 – (–1​)​ 2n + 1 ​ ​ e) 2 + ​ (–1​)​ 2n + 1 ​ __ (–1​)​ 2n​ ​ ​ 1 .10 vereinfache! a) ​ 2 ​ 1 _ 2 ​x 3 ​ 3 ​· (​2​x​ 4 )​ ​ 3 ​ b) ​ ​(​x​ 3 ​)​ 6 ​ _ x​ ​ 2 ​ ​· 2​x​ 3 ​ c) ​ 2 – ​ 1 _ 2 ​x​ ​ 2 ​ 3 ​ 3 ​: ​x​ 4 ​ d) 0,25​x​ 5 ​: ​(0,5​x​ 2 ​)​ 2 ​ R Nur zu Prüfzwecken – Eigentum des Verlags öbv

RkJQdWJsaXNoZXIy ODE3MDE=