Mathematik verstehen 5, Schulbuch

75 4 . 2 ANWENdUNgEN vON SINUs , COsINUs UNd TaNgENs 4 . 22 Das untere Ende einer 4m langen Leiter, die gegen eine senkrechte Wand gelehnt ist, ist von der Wand 1m entfernt. Welchen Winkel schließt die Leiter mit dem waagrechten Boden ein und wie hoch ist das obere Ende der Leiter über dem Boden? 4 . 23 Rampen für Rollstuhlfahrer sollen nicht steiler als 6° sein. Wie lang muss eine Rampe mindestens sein, wenn sie einen höhenunterschied von 0,5m zu überwinden helfen soll? 4 . 24 Eine 3,5 km lange Straße steigt mit a) 8°, b) 9°, c) 10° an. Wie groß ist die höhenzunahme? 4 . 25 An einem Wintertag zu Mittag wirft ein lotrecht stehender Stab von 1,45m Länge einen 4,38m langen Schatten auf den waagrechten Boden. 1) Welchen Winkel schließen die Sonnenstrahlen an diesem Tag mit der horizontalebene ein? 2) An einem Sommertag mittags schließen die Sonnenstrahlen mit der horizontalebene einen Winkel von 65,3° ein. Wie lang ist jetzt der Schatten des Stabs? 4 . 26 In der nebenstehenden Landkarte ist eine geradlinige Straße eingezeichnet, die von A nach B gleichmäßig ansteigt. Benachbarte höhenlinien weisen einen höhenunterschied von 10m auf. Entnimm durch eine möglichst genaue Messung den horizontalabstand von A und B! Unter welchem Winkel steigt die Straße von A nach B an und wie lang ist sie? 4 . 27 Ein Passagierflugzeug erreicht nach einem Steigflug von 6min mit einer durchschnittlichen Geschwindigkeit von 550 km/h seine Reiseflughöhe von 12000m. 1) Wie lang ist die Strecke, die das Flugzeug im Steigflug zurücklegt, und wie groß ist dabei der Steigungswinkel? 2) Wann und in welcher höhe überfliegt das Flugzeug eine Flugleitstelle, die 30 km vom Abflug- hafen entfernt ist? Zerlegung in rechtwinkelige Dreiecke 4 . 28 von einem gleichschenkeligen Dreieck (a = b) kennt man b = 6,3 und c = 4,5. Berechne die übrigen Seitenlängen und Winkel des Dreiecks! LösUNg: Wir zerlegen das gleichschenkelige Dreieck in zwei rechtwinkelige Dreiecke: cos α = ​ ​ c _ 2 ​ _ b ​= ​ 2,25 _ 6,3 ​ w α = ​cos​ –1 ​​ 2 ​ 2,25 _ 6,3 ​ 3 ≈ 69,1° β ≈ 69,1°, γ = 180° – 2 α ≈ 41,8° AUfgabEN 4 . 29 von einem gleichschenkeligen Dreieck (a = b) kennt man die folgenden Bestimmungsstücke. Berechne die fehlenden Seitenlängen und Winkel des Dreiecks! a) b = 9,7 , c = 4,4 e) α = 74°, ​h​ c = 9,1 b) c = 16,8 , h a = 9,7 f) γ = 25°, ​h​ c ​= 14,2 c) c = 14,1 , ​h​ c ​= 10,7 g) γ = 32°, ​h​ a = 9,9 d) a = 11,5 , α = 65° h) α = 70°, ​h​ a ​= 15,6 A 200 m B R A B C α β γ a b c R A B C α γ a b c h a h c Nur zu Prüfzwecken – Eigentum des Verlags öbv

RkJQdWJsaXNoZXIy ODE3MDE=