Mathematik verstehen 5, Schulbuch
55 KOMpEtENZChECk AUfgabEN vOM Typ 2 2 .111 Skonto Der Bruttopreis einer Ware setzt sich aus dem Nettopreis n der Ware und p% Mehrwertsteuer zusammen. Die Mehrwertsteuer kassiert der verkäufer, muss sie aber dem Staat abliefern. Der verkäufer kann dem Käufer q% Skonto (einen Preisnachlass) gewähren. Dabei gibt es zwei Möglichkeiten: Das Skonto kann vom Nettopreis oder vom Bruttopreis berechnet werden. a) Der Nettopreis einer Ware beträgt 350€, die Mehrwertsteuer beträgt 20%. Der verkäufer gewährt ein Skonto von 5% des Bruttopreises. Wie viel hat der Käufer zu bezahlen? Wie a) , nur wird das Skonto vom Nettopreis berechnet. b) Der Nettopreis einer Ware beträgt n€, die Mehrwertsteuer beträgt p%. Der verkäufer gewährt ein Skonto von q% des Bruttopreises. Stelle eine Formel für den Betrag auf, den der Käufer zu bezahlen hat! Wie a) , nur wird das Skonto vom Nettopreis berechnet. c) Ist es für den Käufer günstiger, wenn das Skonto vom Bruttopreis berechnet wird oder wenn es vom Nettopreis berechnet wird? Argumentiere mit variablen! Ist es für den Staat günstiger, wenn das Skonto vom Bruttopreis berechnet wird oder wenn es vom Nettopreis berechnet wird? Argumentiere mit variablen! (Bemerkung: Der für den Staat günstigere Berechnungsmodus ist in Österreich vorgeschrieben.) 2 .112 Ziffernvertauschungen Es gibt Paare von zweistelligen Zahlen, deren Produkt unverändert bleibt, wenn man bei bei- den Zahlen die Ziffern vertauscht, zB: 17 · 71 = 71 · 17 Dieses Beispiel ist jedoch trivial (selbsterklärend), weil sich die beiden Zahlen nur in der Reihenfolge der Ziffern unterscheiden. Nichttriviale Zahlenpaare sind viel schwerer zu finden, wie etwa: 39 · 62 = 93 · 26 Durch unsystematisches Probieren hat man wenig Chancen und systematisches Probieren ist mühsam. Das Problem wird jedoch einfach, wenn man variable für die Zehnerstelle und die Einerstelle einführt: Erste Zahl: Zehnerstelle a, Einerstelle b Zweite Zahl: Zehnerstelle u, Einerstelle v Dann lauten die beiden Zahlen 10 · a + b und 10 · u + v. a) Wie lautet die erste bzw. zweite Zahl, wenn man die Ziffern vertauscht? Schreibe die Bedingung an, die für die beiden Zahlen 10 · a + b und 10 · u + v gelten muss, damit das Produkt nach vertauschung der Ziffern gleich bleibt! Zeige, dass sich diese zu a · u = b · v vereinfachen lässt! b) Finde anhand der Gleichung a · u = b · v zwei weitere nichttriviale Beispiele! Begründe anhand der Gleichung a · u = b · v: Es gibt kein nichttriviales Beispiel, bei dem die Zehnerziffer der einen Zahl gleich der Einerziffer der anderen Zahl ist. AG-R 1 . 2 AG-R 2 .1 AG-R 1 . 2 AG-R 2 .1 Nur zu Prüfzwecken – Eigentum des Verlags öbv
Made with FlippingBook
RkJQdWJsaXNoZXIy ODE3MDE=