Mathematik verstehen 5, Schulbuch
255 KOMpEtENZCHECk 12 . 83 Die Punkte U = (10 1 u 2 ) und v = (v 1 1 2) liegen auf der Geraden g: X = (2 1 –1) + t · (8 1 – 3). Berechne die unbekannten Koordinaten der Punkte U und v! u 2 = ___________ v 1 = ___________ 12 . 84 Zwei punktförmig gedachte Körper bewegen sich längs der Geraden g: X = P + t · _ À gmit P = (30 1 100) und _ À g= (2 1 1). Der erste Körper befindet sich zu Beginn im Punkt P und bewegt sich pro Sekunde um _ À gweiter. Der zweite Körper befindet sich zu Beginn im Punkt Q = (750 1 q 2 ) und bewegt sich mit der gleichen Geschwindigkeit auf den ersten Körper zu. Berechne, nach wie vielen Sekunden die beiden Körper aufeinanderstoßen! 12 . 85 Kreuze jene Darstellungen an, welche die Parallele zur Geraden g: 3x – 2y = 8 durch den Punkt P = (4 1 5) beschreiben! a) X = (4 1 5) + t · (3 1 – 2) b) X = (4 1 5) + t · (2 1 3) X = (4 1 5) + t · (4 1 6) X = (4 1 5) + t · (– 2 1 3) X = (2 1 2,5) + t · (1,5 1 1) X = (7 1 3) + t · (2 1 3) 4x – 5y = – 9 y = –1 + 1,5x 3x – 2y = 2 y = 1 – 1,5x 12 . 86 Ordne jeder Geraden der linken Tabelle die zugehörige Parameterdarstellung bzw. Gleichung aus der rechten Tabelle zu! a) 1. Achse A X = t · (1 1 1) b) 1. Achse A x = y 2. Achse B X = t · (2 1 0) 2. Achse B y = 0,5· x 1. Mediane C X = t · (0 1 2) 1. Mediane C x = 0 2. Mediane D X = t · (–1 1 2) 2. Mediane D y = 0 E X = t · (2 1 – 2) E y = – x 12 . 87 Gegeben ist die Strecke AB mit A = (1 1 5) und B = (3 1 –1). Kreuze jene Darstellungen an, welche die Streckensymmetrale von AB beschreiben! a) X = (2 1 2) + t · (2 1 – 6) b) 2x – 2y = 16 X = (2 1 2) + t · (3 1 1) 3x + y = 8 X = (5 1 3) + t · (3 1 1) x – 3y = –4 X = (– 2 1 – 2) + t · (3 1 1) 2x + 2y = 2 X = (2 1 2) + t · (– 6 1 – 2) 9y = 12 + 3x 12 . 88 Gegeben ist eine Gerade g: X = P + t · _ À PQ. Der Punkt M ist der Mittelpunkt der Strecke PQ, der Punkt R teilt die Strecke PQ im verhältnis 1 : 3. Ordne jedem Parameterwert der linken Tabelle den zugehörigen Punkt aus der rechten Tabelle zu! t = 0 A Punkt Q t = 1 B Punkt M t = 1 _ 2 C Punkt P t = 1 _ 4 D Punkt R AG-R 3 . 4 AG-R 3 . 4 AG-R 3 . 4 AG-R 3 . 4 AG-R 3 . 4 AG-R 3 . 4 Nur zu Prüfzwecken – Eigentum des Verlags öbv
Made with FlippingBook
RkJQdWJsaXNoZXIy ODE3MDE=