Mathematik verstehen 5, Schulbuch
11 1 . 2 ZaHlbEREICHE Numerische Darstellung rationaler Zahlen Man kann die rationalen Zahlen auf zwei Arten anschreiben: in Bruchdarstellung 2 zB 1 _ 4 3 oder in Dezimaldarstellung (zB 0,25). Eine Dezimaldarstellung setzt sich aus Ziffern und dem Komma zu- sammen. Treten nach dem Komma nur endlich viele Ziffern auf, spricht man von einer endlichen Dezimaldarstellung , andernfalls von einer unendlichen Dezimaldarstellung . Eine Dezimaldarstellung einer rationalen Zahl z _ n erhält man, indem man z durch n dividiert. Dabei tritt genau einer der beiden folgenden Fälle auf: (1) D ie Division geht sich aus, dh. es tritt einmal der Rest 0 auf und man erhält eine endliche Dezimaldarstellung . BEISpIElE : 1 _ 4 = 0,25; 3 _ 8 = 0,375 (2) D ie Division geht sich nicht aus, dh. es tritt nie der Rest 0 auf und man erhält eine unendliche Dezimaldarstellung. Da in diesem Fall aber nur die Reste 1, 2, 3, …, n – 1 zur verfügung stehen, muss nach dem Überschreiten des Kommas irgendeinmal ein Rest auftreten, der schon bei einer früheren Nachkommastelle aufgetreten ist. Damit wiederholen sich die Ziffern ab einer bestimmten Nachkommastelle in stets gleichen Blöcken und wir erhalten eine unendliche, aber periodische Dezimaldarstellung. BEISpIElE : 1 _ 3 = 0,333333… = 0, · 3; 141 _ 990 = 0,142424242… = 0,1 _ 42 Reelle Zahlen Es gibt Zahlen, deren Dezimaldarstellungen weder endlich noch periodisch sind. BEISpIEl : 1,10100100010000… Die Ziffernfolge nach dem Komma sieht so aus: 1 und einmal 0, dann 1 und zweimal 0, dann 1 und dreimal 0, dann 1 und viermal 0, usw. Man sieht sofort, dass diese Dezimaldarstellung nicht endlich, sondern unendlich ist, aber auch nicht periodisch ist. Solche Zahlen können nach der obigen Überlegung nicht in der Form z _ n (mit z * ℤ und n * ℕ *) dargestellt werden (sonst wäre ihre Dezimaldarstellung ja endlich oder periodisch). Diese Zahlen können daher nicht rational sein. Man bezeichnet sie als irrationale Zahlen . Die Zahl 1,10100100010000… ist ein Beispiel für eine irrationale Zahl. Erweitert man die Menge ℚ der rationalen Zahlen um die Menge I der irrationalen Zahlen, so er- hält man insgesamt die Menge der reellen Zahlen . Diese wird mit ℝ bezeichnet: ℝ = Menge der reellen Zahlen Es gilt also: ℝ = ℚ ± I und ℚ ² ℝ , da jede rationale Zahl auch eine reelle Zahl ist. Merke Die reellen Zahlen setzen sich aus den rationalen und den irrationalen Zahlen zusammen. Eine reelle Zahl ist genau dann rational , wenn ihre Dezimaldarstellung endlich oder periodisch ist. Eine reelle Zahl ist genau dann irrational , wenn ihre Dezimaldarstellung unendlich, aber nicht periodisch ist. Die rationalen Zahlen lassen sich in Bruchform z _ n darstellen (mit z * ℤ und n * ℕ *), die irrationalen Zahlen nicht . R R Nur zu Prüfzwecken – Eigentum de Verlags öbv
Made with FlippingBook
RkJQdWJsaXNoZXIy ODE3MDE=