Das ist Mathematik 1, Arbeitsheft

73 M Quader und Würfel 3 Rauminhalt Ordne die einander entsprechenden Rauminhalte richtig zu! Wie groß ist der Rauminhalt des dargestellten Körpers, wenn jeder Würfel 1 cm Kantenlänge hat? Hinter den sichtbaren Würfeln sind keine Hohlräume. Kreuze die richtige Antwort an! a) b) 8 cm 3 9 cm 3 10 cm 3 11 cm 3 12 cm 3 8 cm 3 9 cm 3 10 cm 3 11 cm 3 12 cm 3 Berechne Oberfläche und Rauminhalt des Quaders mit den Kantenlängen a = 12 cm, b = 5 cm und c = 4 cm! O = (a · b + a · c + b · c) · 2 ¥ O = cm² V = a · b · c ¥ V = cm 3 Berechne Oberfläche und Rauminhalt folgender Quader! Vergleiche die Kantenlängen und die jeweiligen Ergebnisse für Oberfläche und Rauminhalt und vervollständige dann die begonnenen Sätze! Quader 1 Quader 2 Quader 3 Quader 4 Quader 5 a 4 cm 8 cm 8 cm 4 cm 8 cm b 3 cm 3 cm 6 cm 6 cm 6 cm c 2 cm 2 cm 2 cm 4 cm 4 cm O cm² cm² cm² cm² cm² V cm 3 cm 3 cm 3 cm 3 cm 3 Wenn man eine Kantenlänge verdoppelt, dann verdoppelt sich auch . Wenn man zwei Kantenlängen verdoppelt, dann sich der Rauminhalt. Wenn man alle drei Kantenlängen verdoppelt, dann wird die Oberfläche so groß und der Rauminhalt wird so groß. Lösungswort: __ __ __ __ 272 AD O I 2m 3 30dm 3 2dm 3 3 cm 3 230dm 3 2m 3 300dm 3 2 300 cm 3 20dm 3 30 cm 3 1 cm 3 54mm 3 154 cm 3 1 054 cm 3 1 cm 3 540mm 3 154mm 3 15 cm 3 4 mm 3 2,3m 3 0,020 03m 3 2,003dm 3 2,03m 3 2,3dm 3 0,230m 3 0,154dm 3 1,054 cm 3 15,004 cm 3 1,54 cm 3 0,154 cm 3 1,054dm 3 273 AD O I a b c = h 274 AD O I 275 AD O I achtmal H der Rauminhalt B die Oberfläche A vervierfacht U viermal C Nur zu Prüfzwecken – Eigentum des Verlags öbv

RkJQdWJsaXNoZXIy ODE3MDE=