Malle Mathematik verstehen 7. Casio, Technologietraining

23 3 Untersuchen von Polynomfunktionen Öffne für die grafische Überprüfung die Grafik & Tabelle -Anwendung und folge den Anweisungen! C 3.04 Ermittle das Krümmungsverhalten der allgemeinen Polynomfunktion f dritten Grades mit f(x) = ax 3 + bx 2 + cx + d und a > 0! Lösung: Linksgekrümmt für x > – b _ 3a und rechtsgekrümmt für x < – b _ 3a . Extremstellen und Extrempunkte C 3.05 Ermittle rechnerisch die lokalen und globalen Extremstellen und Extrempunkte der Funktion f(x) = x 4 _ 24 – 2x 2 _ 3 + x + 2 im Intervall [–5; 4] und überprüfe das Ergebnis grafisch! Runde das Ergebnis auf 2 Dezimalen! Lösung: Öffne die Main -Anwendung und folge den Anweisungen! Hinweis: Der folgende Screenshot wurde durch Tippen auf q in der Iconleiste erstellt. Verwende zur Eingabe die bereits definierten Funktionen f(x) und f2(x) ! Hake die Kästchen vor den beiden Eingabezeilen an und tippe in der Symbolleiste auf $ , um die Funktionsgraphen zu zeichnen! Aus dem Graphen der zweiten Ableitungsfunktion von f(x) lässt sich das Krümmungsverhalten von f(x) annähernd überprüfen. Für eine genaue Überprüfung kann der Befehl Nullstelle unter Menüleiste/Analyse/Grafische Lösung verwendet werden. Die Auswahl des richtigen Funktionsgraphen erfolgt mit den Cursortasten (oben/unten) und der Bestätigung mit E . 1 2 3 4 5 Falls notwendig, definiere die Funktion wie in Aufgabe C 3.03 Schritt 1 ! Gib f(x) in eine neue Eingabezeile ein und kontrolliere die Definition! 1 7 6 2 8 3 9 4 10 5 Gib die Zeile wie im Screenshot dargestellt ein und bestätige die Eingabe mit E ! Achte auf die richtige Setzung der Klammern! Drei mögliche Extremstellen werden angezeigt: x = –3,15; x = 0,82 und x = 2,33. 1 7 6 2 8 3 9 4 10 5 Nur zu Prüfzwecken – Eigentum des Verlags öbv

RkJQdWJsaXNoZXIy ODE3MDE=