100 % Mathematik 4, Sommertraining, Arbeitsheft
4 Reelle Zahlen Was weißt du noch? Kreuze an, ob eine Aussage richtig oder falsch ist. Stelle falsche Aussagen richtig. Aussage r f richtige Lösung − √ __ 25gehört zur Menge der ganzen Zahlen. Eine irrationale Zahl lässt sich nicht als Bruch darstellen. Die Abbildung oben zeigt die grafische Darstellung von √ _ 3. 3,45 ∈ ℚ und 3,45 ∈ ℝ Folgende Mengen enthalten dieselben Elemente: M 1 = {x ∈ ℕ | x < 7} M 2 = {0, 1, 2, 3, 4, 5, 6, 7} Der Bruch 40 _ 99 kann auch als endliche Dezimalzahl dargestellt werden. Richtig oder falsch? Kreuze an. richtig falsch Zwischen −5 und +3 liegen genau 4 ganze Zahlen. Zwischen −5 und +3 liegen keine rationalen Zahlen. Zwischen +3 und +7 liegen genau 3 natürliche Zahlen. Der Betrag von −5 ist größer als der Betrag von +3. Gegeben ist die Zahlenmenge M = {−34; −12,67; − √ __ 36; − 3 _ 6 ; − 1 _ 9 ; √ _ 3; 2; 4,5} Finde für folgende Aussagen jeweils ein Element oder mehrere Elemente aus der Menge M. a) Die Zahl ist ein Element der Menge der natürlichen Zahlen und der ganzen Zahlen. b) Die Zahl ist kein Element der Menge der rationalen Zahlen. c) Die Zahl ist ein Element der Menge der reellen Zahlen, jedoch kein Element der Menge der ganzen Zahlen. 0 1 2 3 4 5 3 ? 7 8 Zahlen, Zahlen, Zahlen – Eigenschaften reeller Zahlen Nur zu Prüfzwecken – Eigentum des Verlags öbv
Made with FlippingBook
RkJQdWJsaXNoZXIy ODE3MDE=