Mathematik anwenden HAK | HUM, Mündliche Reife- und Diplomprüfung, Maturatraining
5 Algebra und Geometrie 1 Algebra und Geometrie Grundlagen a * R ; a ≠ 0; n * N ; n > 0 a n = a·a·…·a 1222222232222225 n Faktoren a 0 = 1 a 1 = a a ‒1 = 1 _ a a ‒n = 1 _ a n = 2 1 _ a 3 n Binomische Formeln a, b * R (a + b) 2 = a 2 + 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a – b) 2 = a 2 – 2ab + b 2 (a – b) 3 = a 3 – 3a 2 b + 3ab 2 – b 3 (a – b)(a + b) = a 2 – b 2 (a – b)(a 2 + ab + b 2 ) = a 3 – b 3 Wurzeln (Potenzen mit rationalen Exponenten) a, b * R ; a, b > 0; m, n, k * N ; m, n, k > 0 a = n 9 _ b É a n = b 9 _ a= 2 9 _ a= a 1 _ 2 n 9 _ a= a 1 _ n n 9 __ a k = ( n 9 _ a) k = a k _ n n 9 ___ a·b= n 9 _ a· n 9 _ b n 9 __ m 9 _ a= n·m 9 _ a n 9 _ a _ b = n 9 _ a _ n 9 _ b n 9 __ a k = n·m 9 ___ a k·m Rechenregeln a, b * R ; a, b ≠ 0; r, s * Q a r ·a s = a r + s (a·b) r = a r ·b r (a r ) s = a r·s = (a s ) r a r : a s = a r _ a s = a r – s 2 a _ b 3 r = a r _ b r a, b, x * R ; a > 0; a ≠ 1 a x = b É x = log a (b) log a (1) = 0 log a (a) = 1 log a 2 1 _ a 3 = ‒1 log a (a x ) = x natürlicher Logarithmus: ln(x) = log e (x) Logarithmus zur Basis 10: lg(x) = log 10 (x) Rechenregeln x, y * R ; x, y > 0 log a (x·y) = log a (x) + log a (y) log a (x y ) = y·log a (x) log a 2 x _ y 3 = log a (x) – log a (y) log a (x) = ln(x) _ ln(a) Gleichung Lösungen Lineare Gleichung ax + b = 0 x = ‒ b _ a (falls a ≠ 0) Quadratische Gleichung x 2 + p·x + q = 0 Kleine Lösungsformel: x 1, 2 = ‒ p _ 2 ± 9 ____ 2 p _ 2 3 2 – q a·x 2 + b·x + c = 0 Große Lösungsformel: x 1, 2 = ‒b ± 9 _____ b 2 – 4ac __ 2a Exponentialgleichung a x = b x = log a (b) a n Basis Exponent Potenzen Logarithmen Gleichungen Nur zu Prüfzwecken – Eigentum des Verlags öbv
Made with FlippingBook
RkJQdWJsaXNoZXIy ODE3MDE=