Mathematik anwenden HAK | HUM, Mündliche Reife- und Diplomprüfung, Maturatraining

5 Algebra und Geometrie 1 Algebra und Geometrie Grundlagen a * R ; a ≠ 0; n * N ; n > 0 a n = a·a·…·a 1222222232222225 n Faktoren a 0 = 1 a 1 = a a ‒1 = ​  1 _ a ​ a ‒n = ​  1 _  ​ a​ n ​ ​= ​ 2  ​  1 _ a ​  3 ​ n ​ Binomische Formeln a, b * R (a + b) 2 = a 2 + 2ab + b 2 (a + b) 3 = a 3 + 3a 2  b + 3ab 2 + b 3 (a – b) 2 = a 2 – 2ab + b 2 (a – b) 3 = a 3 – 3a 2  b + 3ab 2 – b 3 (a – b)(a + b) = a 2 – b 2 (a – b)(a 2 + ab + b 2 ) = a 3 – b 3 Wurzeln (Potenzen mit rationalen Exponenten) a, b * R ; a, b > 0; m, n, k * N ; m, n, k > 0 a = ​ n 9 _ b​ É  a n = b ​ 9 _ a​= ​ 2 9 _ a​= ​a​ ​  1 _ 2 ​ ​ ​ n 9 _ a​= ​a​ ​  1 _ n ​ ​ ​ n 9 __ ​a​ k ​ ​= (​ n 9 _ a​)​ k ​= ​a​ ​  k _ n ​ ​ ​ n 9 ___ a·b​= ​ n 9 _ a​·​ n 9 _ b​ ​ n 9 __ ​ m 9 _  a​​= ​ n·m 9 _ a​ ​ n 9 _ ​  a _ b ​ ​= ​  ​ n 9 _  a​ _ ​ n 9 _ b​ ​ ​ n 9 __ ​a​ k ​ ​= ​ n·m 9 ___ ​a​ k·m ​​ Rechenregeln a, b * R ; a, b ≠ 0; r, s * Q a r ·a s = a r + s (a·b) r = a r ·b r (a r ) s = a r·s = (a s ) r a r : a s = ​  ​a​ r ​ _  ​ a​ s ​ ​= a r – s ​ 2  ​  a _ b ​  3 ​ r ​= ​  ​a​ r ​ _  ​b​ r ​  ​ a, b, x * R ; a > 0; a ≠ 1 a x = b  É  x = log a (b) log a (1) = 0 log a (a) = 1 log a ​ 2  ​  1  _ a ​  3 ​= ‒1 log a (a x ) = x natürlicher Logarithmus: ln(x) = log e (x) Logarithmus zur Basis 10: lg(x) = log 10 (x) Rechenregeln x, y * R ; x, y > 0 log a (x·y) = log a (x) + log a (y) log a (x y ) = y·log a (x) log a ​ 2  ​  x  _ y ​  3 ​= log a (x) – log a (y) log a (x) = ​  ln(x) _ ln(a) ​ Gleichung Lösungen Lineare Gleichung ax + b = 0 x = ‒ ​  b _  a ​ (falls a ≠ 0) Quadratische Gleichung ​x​ 2 ​+ p·x + q = 0 Kleine Lösungsformel: ​x​ 1, 2 ​= ‒ ​  p _ 2 ​± ​ 9 ____ ​ 2  ​  p _  2 ​ 3 ​ 2 ​– q​ a·​x​ 2 ​+ b·x + c = 0 Große Lösungsformel: ​x​ 1, 2 ​= ​  ‒b ± ​ 9 _____ ​b​ 2 ​– 4ac​ __ 2a​  ​ Exponentialgleichung ​a​ x ​= b x = lo​g​ a ​(b)   ​a​ n ​ ​Basis​ Exponent ​ Potenzen Logarithmen Gleichungen Nur zu Prüfzwecken – Eigentum des Verlags öbv

RkJQdWJsaXNoZXIy ODE3MDE=