Sexl Physik 8, Schulbuch
| 86 Experiment: Abschirmung ionisierender Strahlung 86.1 Du brauchst: Radioaktive Substanz, Geiger-Müller-Zähler, verschiedene Materialien (Papier, Metallblech, Bleiplatte). Was ist zu tun? Halte die radioaktive Substanz vor das Zählrohr. Halte nun zwischen Zählrohr und Gegenstand jeweils eines der genannten Materialien. Variiere die Dicke des Materials und überprüfe, wie gut das Material die Strahlung abschirmt. α - Strahlen haben in Luft eine Reichweite von einigen Zentimetern und können durch ein Blatt Papier abgeschirmt werden. β - Strahlen haben in Luft eine Reichweite von einigen Dezimetern und können durch ein Aluminiumblech von 5 mm Stärke abgeschirmt werden. γ - Strahlung hat in Luft eine Reichweite von einigen Metern Die Strahlung kann durch Blei- oder Betonplatten abgeschirmt werden. b) Das Zerfallsgesetz Beim Zerfall radioaktiver Substanzen nimmt die Intensität der Strahlung mit der Zeit abnimmt. Dabei folgt die Intensität einem einfachen Gesetz: Sie nimmt in gleichen Zeitabschnitten immer um denselben Faktor ab. Als Halbwertszeit T 1/2 wird jene Zeitdauer bezeichnet, innerhalb der die Intensität auf die Hälfte des Aus- gangswerts abnimmt und die Hälfte der ursprünglich vorhandenen radioaktiven Kerne in andere Kerne zerfallen ist. Die Halbwertszeit ist für die radioaktiven Isotope charakteristisch ( 85.4 ). Entstehen allerdings beim radioaktiven Zer- fall wieder radioaktive Kerne (Tochterkerne), so tragen auch sie zur Intensität der Strahlung bei. Die mittlere Anzahl der pro Zeiteinheit zerfallenden Kerne wird als Aktivität be- zeichnet. Sie ist proportional zur Anzahl der vorhandenen radioaktiven Atomker- ne. Sind N Kerne vorhanden, so ist die Aktivität gegeben durch: Aktivität Die mittlere Anzahl der Zerfälle pro Sekunde wird als Aktivität bezeichnet. A = d N /d t = – λ N Einheit: Becquerel : 1 Bq = 1 s –1 Die Aktivität einer Substanz kann mit dem Geiger-Müller-Zählrohr gemessen wer- den. Bei der Bestimmung der Aktivität eines einzelnen radioaktiven Isotops ist zu berücksichtigen, dass auch die Tochterkerne im Allgemeinen radioaktiv sind. Die Zerfallskonstante λ bestimmt den Anteil der pro Zeiteinheit zerfallenden Ker- ne. Das negative Vorzeichen bedeutet, dass die Anzahl der Kerne abnimmt. Nehmen wir an, dass zum Zeitpunkt t 0 = 0 N 0 Kerne vorhanden sind. Wie viele Ker- ne N ( t ) sind nach einer Zeit t noch vorhanden? Wir integrieren die Gleichung für die Aktivität: = – λ N ( t ) w = – λ d( t ) w ln ( ) = – λ t w N ( t ) = N 0 ·e – λ t Aus den Gleichungen erhalten wir folgende Beziehung zwischen der Zerfallskons- tante λ und der Halbwertszeit T 1/2 : N ( T 1/2 ) = N 0 e – λ T 1/2 = e – λ T 1/2 = w – λ T 1/2 = ln w T 1/2 = 0 5·10 8 10 9 Anzahl der Kerne N 2,5·10 8 0 8 16 32 48 Zeit in Tagen t N 0 N 0 2 N 0 4 N 0 8 Zerfall von I Halbwertszeit 8 Tage 131 24 40 86.1 Das exponentielle Zerfallsgesetz: Die Anzahl der noch nicht zerfallenen Kerne (und daher die Aktivität) von I-131 halbiert sich innerhalb einer Halbwertszeit. 80 82 84 86 88 90 92 94 Kernladungszahl Z 122 124 126 128 130 132 134 136 138 140 142 144 146 Neutronenzahl N = A – Z langlebige Kerne α -Strahler β -Strahler stabiler Kern 238 U 234 Th 234 Pa 234 U 230 Th 222 Rn 218 Po 214 Pb 214 Bi 214 Po 210 Tl 210 Bi 210 Po 206 Pb 226 Ra 200 Pb 86.2 Die Uran-Radiumreihe: Durch den Zerfall des langlebigen U-238 entstehen fortlaufend radioaktive Nuklide mit teilweise sehr kurzen Halbwertszeiten. Am Ende dieser natürlichen Zerfallsreihe bildet sich das stabile Bleiisotop Pb-206. Radon (Rn) ist ein Edelgas. Rn-222 ist ein Zerfallsprodukt des Radium und hat eine Halbwertszeit von 3,8 d. Das aus dem Erdinneren strömende Gas kann sich in schlecht belüfteten Räumen sammeln und bildet wegen seiner ebenfalls radioaktiven Zerfallsprodukte eine wesentliche Quelle der natürlichen Strahlenbelastung (im Mittel etwa 1 mSv/a). Nur zu Prüfzwecken – Eigentum des Verlags öbv
Made with FlippingBook
RkJQdWJsaXNoZXIy ODE3MDE=